Rinki Prasad Bhagat, Jyotisha, Indrasis Dasgupta, Sk Abdul Amin, Pranay Jakkula, Arijit Bhattacharya, Insaf Ahmed Qureshi, Shovanlal Gayen
{"title":"First report on analysis of chemical space, scaffold diversity, critical structural features of HDAC11 inhibitors.","authors":"Rinki Prasad Bhagat, Jyotisha, Indrasis Dasgupta, Sk Abdul Amin, Pranay Jakkula, Arijit Bhattacharya, Insaf Ahmed Qureshi, Shovanlal Gayen","doi":"10.1007/s11030-025-11217-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the histone deacetylase (HDAC) family, HDAC11 is the smallest and a single member under the class IV subtype. It is important as a drug target mainly in cancer, inflammatory and autoimmune diseases. The design and development of selective HDAC11 inhibitors is quite a challenge for the chemist community due to the unavailability of the crystal structure of HDAC11. Ligand-based drug design (LBDD) strategies are the hope to speed up the development of its inhibitors. Here, an in-depth analysis of 712 HDAC11 inhibitors is performed through compound space networks and various cheminformatics approaches. The analyses demonstrated significant clustering of similar compounds based on their chemical structures, offering valuable insights into the chemical space occupied by HDAC11 inhibitors. Furthermore, the current work aimed to develop robust classification-based QSAR models that deliver the essential structural fingerprints. This study highlighted that the compounds bearing scaffolds such as isoindoline, benzimidazole, carboxamide/hydroxamate moieties, etc., are important for HDAC11 inhibitors. Molecular docking and MD simulations further provide an in-depth analysis of the binding interaction of the identified fingerprints in the catalytic site of HDAC11. In brief, our study delivers some important structural attributes that will aid medicinal chemists in designing and developing future potent HDAC11 inhibitors.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11217-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the histone deacetylase (HDAC) family, HDAC11 is the smallest and a single member under the class IV subtype. It is important as a drug target mainly in cancer, inflammatory and autoimmune diseases. The design and development of selective HDAC11 inhibitors is quite a challenge for the chemist community due to the unavailability of the crystal structure of HDAC11. Ligand-based drug design (LBDD) strategies are the hope to speed up the development of its inhibitors. Here, an in-depth analysis of 712 HDAC11 inhibitors is performed through compound space networks and various cheminformatics approaches. The analyses demonstrated significant clustering of similar compounds based on their chemical structures, offering valuable insights into the chemical space occupied by HDAC11 inhibitors. Furthermore, the current work aimed to develop robust classification-based QSAR models that deliver the essential structural fingerprints. This study highlighted that the compounds bearing scaffolds such as isoindoline, benzimidazole, carboxamide/hydroxamate moieties, etc., are important for HDAC11 inhibitors. Molecular docking and MD simulations further provide an in-depth analysis of the binding interaction of the identified fingerprints in the catalytic site of HDAC11. In brief, our study delivers some important structural attributes that will aid medicinal chemists in designing and developing future potent HDAC11 inhibitors.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;