Pollution Load Index and Ecological Risk Assessment of Sediment Heavy Metals in Lake Edku, Egypt.

IF 2.7 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Amr E Keshta, Joel E Gagnon, J C Barrette, Mohamed E Shaheen
{"title":"Pollution Load Index and Ecological Risk Assessment of Sediment Heavy Metals in Lake Edku, Egypt.","authors":"Amr E Keshta, Joel E Gagnon, J C Barrette, Mohamed E Shaheen","doi":"10.1007/s00128-025-04054-5","DOIUrl":null,"url":null,"abstract":"<p><p>Coastal lagoons, like lake Edku in north Egypt, are vital ecosystems that offer a wide variety of ecosystem services, including wildlife habitats. However, many are experiencing severe human impacts due to their proximity to urbanization. The main objectives of this study were to determine the concentrations of major and trace elements in lake Edku sediments, and to assess their ecological risk impacts based on Contamination Degree (Cd), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI). During March 2022, six sampling stations (S1 through S6) were established across the lake, and a total of 14 elements were analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES). Our analyses indicate that sediment collected from sampling stations near to sources of wastewater runoff is the most polluted. For example, S1, which is located near to wastewater discharge, had the highest concentration of Cr, Co, Ni, Cu, Zn, Cd, and Pb (90.9, 23.1, 58.7, 55.2, 81.4, 0.5, and 12.8 µg/g, respectively). Evaluating the sediment PERI revealed that sampling stations S1, S2, and S4 had moderate ecological risk (150 < average PERI < 300), indicating there is a negative environmental impact on the living organisms and water quality of lake Edku. Because lake Edku is important for biodiversity conservation, continuous monitoring of metal contamination should be a top priority, as well as improving the efficiency of wastewater treatment facilities to ensure removal of metals before discharging to coastal ecosystems.</p>","PeriodicalId":501,"journal":{"name":"Bulletin of Environmental Contamination and Toxicology","volume":"114 6","pages":"84"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00128-025-04054-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal lagoons, like lake Edku in north Egypt, are vital ecosystems that offer a wide variety of ecosystem services, including wildlife habitats. However, many are experiencing severe human impacts due to their proximity to urbanization. The main objectives of this study were to determine the concentrations of major and trace elements in lake Edku sediments, and to assess their ecological risk impacts based on Contamination Degree (Cd), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI). During March 2022, six sampling stations (S1 through S6) were established across the lake, and a total of 14 elements were analyzed using inductively coupled plasma optical emission spectroscopy (ICP-OES). Our analyses indicate that sediment collected from sampling stations near to sources of wastewater runoff is the most polluted. For example, S1, which is located near to wastewater discharge, had the highest concentration of Cr, Co, Ni, Cu, Zn, Cd, and Pb (90.9, 23.1, 58.7, 55.2, 81.4, 0.5, and 12.8 µg/g, respectively). Evaluating the sediment PERI revealed that sampling stations S1, S2, and S4 had moderate ecological risk (150 < average PERI < 300), indicating there is a negative environmental impact on the living organisms and water quality of lake Edku. Because lake Edku is important for biodiversity conservation, continuous monitoring of metal contamination should be a top priority, as well as improving the efficiency of wastewater treatment facilities to ensure removal of metals before discharging to coastal ecosystems.

埃及艾德库湖沉积物重金属污染负荷指数及生态风险评价
沿海泻湖,如埃及北部的艾德库湖,是至关重要的生态系统,提供各种生态系统服务,包括野生动物栖息地。然而,由于靠近城市化,许多城市正遭受严重的人为影响。本研究的主要目的是通过污染程度(Cd)、污染负荷指数(PLI)和潜在生态风险指数(PERI)来确定鄂古湖沉积物中主要元素和微量元素的浓度,并评价其生态风险影响。2022年3月,在湖上建立了6个采样站(S1 ~ S6),利用电感耦合等离子体发射光谱(ICP-OES)对14种元素进行了分析。我们的分析表明,从靠近废水径流源的采样站收集的沉积物污染最严重。Cr、Co、Ni、Cu、Zn、Cd、Pb浓度最高的区域为靠近污水排放的S1,分别为90.9、23.1、58.7、55.2、81.4、0.5、12.8µg/g。结果表明,S1、S2和S4采样站具有中等生态风险(150
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.70%
发文量
230
审稿时长
1.7 months
期刊介绍: The Bulletin of Environmental Contamination and Toxicology(BECT) is a peer-reviewed journal that offers rapid review and publication. Accepted submissions will be presented as clear, concise reports of current research for a readership concerned with environmental contamination and toxicology. Scientific quality and clarity are paramount.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信