Research on Temperature Compensation of TDLAS Gas Detection System Based on WOA-SSA-BP Modeling

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Tingting Zhang, Chunsheng Li, Yubin Wei, Jiqiang Wang, Li Wang, Yefeng Gu, Wei Wang, Qinduan Zhang
{"title":"Research on Temperature Compensation of TDLAS Gas Detection System Based on WOA-SSA-BP Modeling","authors":"Tingting Zhang,&nbsp;Chunsheng Li,&nbsp;Yubin Wei,&nbsp;Jiqiang Wang,&nbsp;Li Wang,&nbsp;Yefeng Gu,&nbsp;Wei Wang,&nbsp;Qinduan Zhang","doi":"10.1002/mop.70234","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a novel WOA-SSA-BP model to improve the measurement accuracy of tunable diode laser absorption spectroscopy (TDLAS) gas detection systems in variable temperature environments. The model integrates the efficient search capability of the Whale Optimization Algorithm (WOA), the local exploration capability of the Sparrow Search Algorithm (SSA), and the powerful data fitting capability of the Backpropagation Neural Network (BPNN), forming a collaborative optimization algorithm architecture. The model aims to achieve precise correction of ethane (C<sub>2</sub>H<sub>6</sub>) concentration by accounting for the impacts of three aspects: the variation in gas characteristic spectral line intensity due to temperature fluctuations, the performance instability of infrared light sources, and the electrical property instability of electronic components. The experimental results demonstrate that the WOA-SSA-BP model outperforms the conventional BPNN, WOA-BP, and SSA-BP models. The model exhibits a maximum prediction error of merely 0.29 ppm, alongside an exceptional linear regression coefficient of 0.99998, evidencing its high precision and reliability. Such results suggest that the WOA-SSA-BP model adeptly compensates for the effects of varying temperatures on the TDLAS gas detection system.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel WOA-SSA-BP model to improve the measurement accuracy of tunable diode laser absorption spectroscopy (TDLAS) gas detection systems in variable temperature environments. The model integrates the efficient search capability of the Whale Optimization Algorithm (WOA), the local exploration capability of the Sparrow Search Algorithm (SSA), and the powerful data fitting capability of the Backpropagation Neural Network (BPNN), forming a collaborative optimization algorithm architecture. The model aims to achieve precise correction of ethane (C2H6) concentration by accounting for the impacts of three aspects: the variation in gas characteristic spectral line intensity due to temperature fluctuations, the performance instability of infrared light sources, and the electrical property instability of electronic components. The experimental results demonstrate that the WOA-SSA-BP model outperforms the conventional BPNN, WOA-BP, and SSA-BP models. The model exhibits a maximum prediction error of merely 0.29 ppm, alongside an exceptional linear regression coefficient of 0.99998, evidencing its high precision and reliability. Such results suggest that the WOA-SSA-BP model adeptly compensates for the effects of varying temperatures on the TDLAS gas detection system.

基于WOA-SSA-BP建模的TDLAS气体检测系统温度补偿研究
为了提高可调谐二极管激光吸收光谱(TDLAS)气体检测系统在变温度环境下的测量精度,提出了一种新的WOA-SSA-BP模型。该模型融合了鲸鱼优化算法(WOA)的高效搜索能力、麻雀搜索算法(SSA)的局部探索能力和反向传播神经网络(BPNN)强大的数据拟合能力,形成了协同优化算法架构。该模型旨在考虑温度波动引起的气体特征谱线强度变化、红外光源性能不稳定以及电子元件电气性能不稳定三个方面的影响,实现对乙烷(C2H6)浓度的精确校正。实验结果表明,WOA-SSA-BP模型优于传统的bp神经网络、WOA-BP和SSA-BP模型。该模型的最大预测误差仅为0.29 ppm,线性回归系数为0.99998,具有较高的精度和可靠性。这些结果表明,WOA-SSA-BP模型可以很好地补偿温度变化对TDLAS气体探测系统的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信