Ryo Harada, Takashi Shiratori, Akinori Yabuki, Yuji Inagaki, Andrew J. Roger, Ryoma Kamikawa
{"title":"Complete Mitochondrial Genomes of Ancyromonads Provide Clues for the Gene Content and Genome Structures of Ancestral Mitochondria","authors":"Ryo Harada, Takashi Shiratori, Akinori Yabuki, Yuji Inagaki, Andrew J. Roger, Ryoma Kamikawa","doi":"10.1111/jeu.70012","DOIUrl":null,"url":null,"abstract":"<p>Mitochondria of eukaryotic cells are direct descendants of an endosymbiotic bacterium related to Alphaproteobacteria. These organelles retain their own genomes, which are highly reduced and divergent when compared to those of their bacterial relatives. To better understand the trajectory of mitochondrial genome evolution from the last eukaryotic common ancestor (LECA) to extant species, mitochondrial genome sequences from phylogenetically diverse lineages of eukaryotes—particularly protists—are essential. For this reason, we focused on the mitochondrial genomes of Ancyromonadida, an independent and understudied protist lineage in the eukaryote tree of life. Here we report the mitochondrial genomes from three Ancyromonadida: <i>Ancyromonas sigmoides</i>, <i>Nutomonas longa</i>, and <i>Fabomonas tropica</i>. Our analyses reveal that these mitochondrial genomes are circularly mapping molecules with inverted repeats that carry genes. This inverted repeat structure has been observed in other mitochondrial genomes but is patchily distributed over the tree of eukaryotes. Ancyromonad mitochondrial genomes possess several protein-coding genes, which have not been detected from any other mitochondrial genomes of eukaryotes sequenced to date, thereby extending the known mitochondrial gene repertoire of ancestral eukaryotes, including LECA. These findings significantly expand our understanding of mitochondrial genome diversity across eukaryotes, shedding light on the early phases of mitochondrial genome evolution.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"72 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jeu.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.70012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria of eukaryotic cells are direct descendants of an endosymbiotic bacterium related to Alphaproteobacteria. These organelles retain their own genomes, which are highly reduced and divergent when compared to those of their bacterial relatives. To better understand the trajectory of mitochondrial genome evolution from the last eukaryotic common ancestor (LECA) to extant species, mitochondrial genome sequences from phylogenetically diverse lineages of eukaryotes—particularly protists—are essential. For this reason, we focused on the mitochondrial genomes of Ancyromonadida, an independent and understudied protist lineage in the eukaryote tree of life. Here we report the mitochondrial genomes from three Ancyromonadida: Ancyromonas sigmoides, Nutomonas longa, and Fabomonas tropica. Our analyses reveal that these mitochondrial genomes are circularly mapping molecules with inverted repeats that carry genes. This inverted repeat structure has been observed in other mitochondrial genomes but is patchily distributed over the tree of eukaryotes. Ancyromonad mitochondrial genomes possess several protein-coding genes, which have not been detected from any other mitochondrial genomes of eukaryotes sequenced to date, thereby extending the known mitochondrial gene repertoire of ancestral eukaryotes, including LECA. These findings significantly expand our understanding of mitochondrial genome diversity across eukaryotes, shedding light on the early phases of mitochondrial genome evolution.
期刊介绍:
The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.