Ultra-high sensitivity electrochemical aptamer biosensor based on a carbon nano-confined interface for the detection of aflatoxin B1 in traditional chinese materia medica decoction pieces

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Bin-Hao Liu, Long-Yue Meng, Lian-Hua Han, Biao Jin
{"title":"Ultra-high sensitivity electrochemical aptamer biosensor based on a carbon nano-confined interface for the detection of aflatoxin B1 in traditional chinese materia medica decoction pieces","authors":"Bin-Hao Liu,&nbsp;Long-Yue Meng,&nbsp;Lian-Hua Han,&nbsp;Biao Jin","doi":"10.1007/s42823-025-00886-7","DOIUrl":null,"url":null,"abstract":"<div><p>A novel, ultra-high sensitivity electrochemical aptamer biosensor (EAB) was fabricated by immobilising gold nanoparticles (Au) on a nano-confined interface of N-doped carbon nanofibers/carbon fibers (N-CNFs/CFs). Gold nanoparticle-thiol (Au–S) conjugates, coupled with aptamer-specific recognition technology, were used to immobilise aflatoxin B1 (AFB1). The nano-confined interface of N-CNFs/CFs provides more binding sites for Au with its unique spatial structure and electroactive surface area, enhancing the electrochemical performance of the matrix. Compared to the existing sensor detection limit, the limit of detection(LOD) of the EAB was approximately 6.4 pg/mL. The dynamic detection ranged from 10.0 to 1.0 × 10<sup>8</sup> pg/mL. Furthermore, AFB1 was also successfully detected in Chinese Materia Medica decoction pieces(CMMDP) using the prepared EAB, with recoveries ranging from 96.18 to 112.87%. These results demonstrate the proposed EAB’s potential as a reliable tool for rapid and efficient detection of AFB1 in complex matrices.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1461 - 1472"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00886-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel, ultra-high sensitivity electrochemical aptamer biosensor (EAB) was fabricated by immobilising gold nanoparticles (Au) on a nano-confined interface of N-doped carbon nanofibers/carbon fibers (N-CNFs/CFs). Gold nanoparticle-thiol (Au–S) conjugates, coupled with aptamer-specific recognition technology, were used to immobilise aflatoxin B1 (AFB1). The nano-confined interface of N-CNFs/CFs provides more binding sites for Au with its unique spatial structure and electroactive surface area, enhancing the electrochemical performance of the matrix. Compared to the existing sensor detection limit, the limit of detection(LOD) of the EAB was approximately 6.4 pg/mL. The dynamic detection ranged from 10.0 to 1.0 × 108 pg/mL. Furthermore, AFB1 was also successfully detected in Chinese Materia Medica decoction pieces(CMMDP) using the prepared EAB, with recoveries ranging from 96.18 to 112.87%. These results demonstrate the proposed EAB’s potential as a reliable tool for rapid and efficient detection of AFB1 in complex matrices.

Graphical abstract

基于纳米碳约束界面的电化学适体生物传感器检测中药饮片中黄曲霉毒素B1
将金纳米粒子(Au)固定在n掺杂碳纳米纤维/碳纤维(N-CNFs/CFs)的纳米约束界面上,制备了一种新型的超高灵敏度电化学适体生物传感器(EAB)。利用金纳米粒子-硫醇(Au-S)偶联物,结合适配体特异性识别技术,固定化黄曲霉毒素B1 (AFB1)。N-CNFs/CFs的纳米约束界面以其独特的空间结构和电活性表面积为Au提供了更多的结合位点,提高了基体的电化学性能。与现有的传感器检出限相比,EAB的检出限(LOD)约为6.4 pg/mL。动态检测范围为10.0 ~ 1.0 × 108 pg/mL。制备的EAB在中药饮片(CMMDP)中也成功检测到AFB1,回收率为96.18% ~ 112.87%。这些结果证明了所提出的EAB作为快速有效检测复杂基质中AFB1的可靠工具的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信