Zhiyuan Ren, Wei Chang, Ke Tian, Peiqi Yao, Bin Liu, Yunfeng Li, Runze Zhang
{"title":"Phosphorus-sulfur co-doped carbon nitride quantum dots for enhanced photocatalytic reduction and fluorescence detection of Cr (VI)","authors":"Zhiyuan Ren, Wei Chang, Ke Tian, Peiqi Yao, Bin Liu, Yunfeng Li, Runze Zhang","doi":"10.1007/s42823-025-00878-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study details the synthesis and characterization of phosphorus-sulfur co-doped graphitic carbon nitride quantum dots (PSQ) and their integration into g-C<sub>3</sub>N<sub>4</sub> (CN) to form PSQ/CN composites for the enhanced photocatalytic reduction of Cr(VI) and fluorescence detection. Incorporating PSQ into CN was found to significantly improve light absorption, narrow the band gap, and enhance charge separation efficiency. Notably, the composite material exhibits superior photocatalytic performance, especially in acidic environments. Photocatalytic assessments utilizing Cr(VI) demonstrated that the PSQ/CN composite outperformed both undoped and singly doped materials, indicating its superior photocatalytic activity. Additionally, phosphorus-sulfur co-doping markedly increased the fluorescence quantum yield of PSQ. The fluorescence intensity exhibited a linear decrease with increasing Cr(VI) concentrations, enabling sensitive and selective detection of Cr(VI) with a detection limit as low as 1.69 μmol/L. Collectively, the PSQ/CN composite and PSQ highlight their potential for photocatalysis and fluorescence-based detection of Cr(VI), providing high sensitivity, selectivity, and synergistic interactions within the composite material.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1445 - 1459"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00878-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study details the synthesis and characterization of phosphorus-sulfur co-doped graphitic carbon nitride quantum dots (PSQ) and their integration into g-C3N4 (CN) to form PSQ/CN composites for the enhanced photocatalytic reduction of Cr(VI) and fluorescence detection. Incorporating PSQ into CN was found to significantly improve light absorption, narrow the band gap, and enhance charge separation efficiency. Notably, the composite material exhibits superior photocatalytic performance, especially in acidic environments. Photocatalytic assessments utilizing Cr(VI) demonstrated that the PSQ/CN composite outperformed both undoped and singly doped materials, indicating its superior photocatalytic activity. Additionally, phosphorus-sulfur co-doping markedly increased the fluorescence quantum yield of PSQ. The fluorescence intensity exhibited a linear decrease with increasing Cr(VI) concentrations, enabling sensitive and selective detection of Cr(VI) with a detection limit as low as 1.69 μmol/L. Collectively, the PSQ/CN composite and PSQ highlight their potential for photocatalysis and fluorescence-based detection of Cr(VI), providing high sensitivity, selectivity, and synergistic interactions within the composite material.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.