Zhi Li, Ru Li, Rui Liu, Wen-Jie Zhang, Yong Wan, Yu-Ze Sun, Lei Yang, Yun-Ze Long
{"title":"A beaded g-C3N4/CoFe2O4 nanofibers for efficient adsorbing and catalytical degrading multiple pollutants","authors":"Zhi Li, Ru Li, Rui Liu, Wen-Jie Zhang, Yong Wan, Yu-Ze Sun, Lei Yang, Yun-Ze Long","doi":"10.1007/s42823-025-00863-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we reported a method for a fabrication of bead-on-string structured g-C<sub>3</sub>N<sub>4</sub>/CoFe<sub>2</sub>O<sub>4</sub> composite nanofibers by electrospinning coupled with in situ calcination. For the first time, this catalyst effectively removed high concentrations of mixed organic pollutants through the synergistic effects of adsorption and photocatalysis. The composite materials removal efficiency of adsorption and photocatalytic for high concentrations of organic pollutants in wastewater can exceed 90%. Surface potential analysis using in situ Kelvin probe force microscopy demonstrated the electron transfer pathways on the catalyst surface. The formation of the heterojunction was demonstrated through DFT calculations to significantly enhance the efficiency of electron–hole separation. This work provided valuable insights for the development of efficient catalysts for the synergistic adsorption-photocatalytic treatment of environmental pollutants, thus addressing increasingly severe environmental challenges.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1187 - 1203"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00863-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we reported a method for a fabrication of bead-on-string structured g-C3N4/CoFe2O4 composite nanofibers by electrospinning coupled with in situ calcination. For the first time, this catalyst effectively removed high concentrations of mixed organic pollutants through the synergistic effects of adsorption and photocatalysis. The composite materials removal efficiency of adsorption and photocatalytic for high concentrations of organic pollutants in wastewater can exceed 90%. Surface potential analysis using in situ Kelvin probe force microscopy demonstrated the electron transfer pathways on the catalyst surface. The formation of the heterojunction was demonstrated through DFT calculations to significantly enhance the efficiency of electron–hole separation. This work provided valuable insights for the development of efficient catalysts for the synergistic adsorption-photocatalytic treatment of environmental pollutants, thus addressing increasingly severe environmental challenges.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.