Determination of Fisher and Shannon Information for 1D Fractional Quantum Harmonic Oscillator

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Abdelmalek Boumali, Karima Zazoua, Fadila Serdouk
{"title":"Determination of Fisher and Shannon Information for 1D Fractional Quantum Harmonic Oscillator","authors":"Abdelmalek Boumali,&nbsp;Karima Zazoua,&nbsp;Fadila Serdouk","doi":"10.1007/s10773-025-06016-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work uses the Riesz-Feller fractional derivative to examine Fisher information and Shannon entropy in a one-dimensional fractional quantum harmonic oscillator. By computing the fractional derivative of the probability density function, we systematically assess these information-theoretic measures, providing deeper insights into the system’s probabilistic characteristics. In this context, we further explore the effect of the parameter <span>\\({\\upalpha }\\)</span> on the one-dimensional fractional quantum harmonic oscillator and analyze its impact on both Fisher and Shannon parameters. We compute the position and momentum information entropies for low-lying quantum states <span>\\((n=0,1,2)\\)</span> to gain a clearer understanding of the system’s behavior. Additionally, we investigate key features of Fisher and Shannon densities as well as probability distributions to identify patterns in information distribution. The study also evaluates the validity of the Stam, Cramer-Rao, and Bialynicki–Birula–Mycielski (BBM) inequalities. In particular, we examine whether the BBM inequality holds true in the form <span>\\(S_{x}+S_{p}\\ge 1+\\ln \\pi \\)</span>, in accordance with standard quantum mechanics. Furthermore, we analyze the complexity measure in the context of the 1D Fractional Quantum Harmonic Oscillator, uncovering an increase in disorder within position space as the quantum number <i>n</i> grows.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06016-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work uses the Riesz-Feller fractional derivative to examine Fisher information and Shannon entropy in a one-dimensional fractional quantum harmonic oscillator. By computing the fractional derivative of the probability density function, we systematically assess these information-theoretic measures, providing deeper insights into the system’s probabilistic characteristics. In this context, we further explore the effect of the parameter \({\upalpha }\) on the one-dimensional fractional quantum harmonic oscillator and analyze its impact on both Fisher and Shannon parameters. We compute the position and momentum information entropies for low-lying quantum states \((n=0,1,2)\) to gain a clearer understanding of the system’s behavior. Additionally, we investigate key features of Fisher and Shannon densities as well as probability distributions to identify patterns in information distribution. The study also evaluates the validity of the Stam, Cramer-Rao, and Bialynicki–Birula–Mycielski (BBM) inequalities. In particular, we examine whether the BBM inequality holds true in the form \(S_{x}+S_{p}\ge 1+\ln \pi \), in accordance with standard quantum mechanics. Furthermore, we analyze the complexity measure in the context of the 1D Fractional Quantum Harmonic Oscillator, uncovering an increase in disorder within position space as the quantum number n grows.

一维分数阶量子谐振子Fisher和Shannon信息的确定
这项工作使用Riesz-Feller分数阶导数来检验一维分数阶量子谐振子中的Fisher信息和Shannon熵。通过计算概率密度函数的分数阶导数,我们系统地评估了这些信息理论度量,为系统的概率特征提供了更深入的见解。在此背景下,我们进一步探讨了\({\upalpha }\)参数对一维分数阶量子谐振子的影响,并分析了其对Fisher和Shannon参数的影响。我们计算低位量子态\((n=0,1,2)\)的位置和动量信息熵,以更清楚地了解系统的行为。此外,我们研究了Fisher和Shannon密度的关键特征以及概率分布,以识别信息分布的模式。本研究还评估了Stam、Cramer-Rao和Bialynicki-Birula-Mycielski (BBM)不等式的有效性。特别是,根据标准量子力学,我们检查BBM不等式是否以\(S_{x}+S_{p}\ge 1+\ln \pi \)的形式成立。此外,我们分析了一维分数阶量子谐振子的复杂性度量,揭示了随着量子数n的增加,位置空间内的无序度增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信