Quantitative structure–activity relationship model to predict the stability constant of uranium coordination complexes for novel uranium adsorbent design†
{"title":"Quantitative structure–activity relationship model to predict the stability constant of uranium coordination complexes for novel uranium adsorbent design†","authors":"Hyun Kil Shin and Youngho Sihn","doi":"10.1039/D5RA02220G","DOIUrl":null,"url":null,"abstract":"<p >A quantitative structure–activity relationship (QSAR) model for predicting the stability constant of uranium coordination complexes to accelerate the discovery of novel uranium adsorbents was developed and evaluated. Effective uranium adsorbents are crucial for mitigating environmental and health risks associated with uranium wastewater, an unavoidable byproduct of nuclear fuel production and power generation, as well as for sequestering uranium from seawater. QSAR modeling addresses the limitations of quantum mechanics calculations and offers a time- and cost-efficient computational approach for exploring vast chemical spaces. The QSAR model was built using a dataset of 108 uranium complexes, incorporating features such as physicochemical properties, coordination numbers of ligands, molecular charge, and the number of water molecules. Catboost regressor achieved an <em>R</em><small><sup>2</sup></small> of 0.75 on the external test set after hyperparameter optimization. Applicability domain analysis was conducted to evaluate model predictive performance. The QSAR model predicts stability constants from the molecular composition alone and is a valuable tool for the efficient design of safer and more sustainable uranium adsorption materials, potentially improving uranium collection processes.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 21","pages":" 16588-16596"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02220g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02220g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A quantitative structure–activity relationship (QSAR) model for predicting the stability constant of uranium coordination complexes to accelerate the discovery of novel uranium adsorbents was developed and evaluated. Effective uranium adsorbents are crucial for mitigating environmental and health risks associated with uranium wastewater, an unavoidable byproduct of nuclear fuel production and power generation, as well as for sequestering uranium from seawater. QSAR modeling addresses the limitations of quantum mechanics calculations and offers a time- and cost-efficient computational approach for exploring vast chemical spaces. The QSAR model was built using a dataset of 108 uranium complexes, incorporating features such as physicochemical properties, coordination numbers of ligands, molecular charge, and the number of water molecules. Catboost regressor achieved an R2 of 0.75 on the external test set after hyperparameter optimization. Applicability domain analysis was conducted to evaluate model predictive performance. The QSAR model predicts stability constants from the molecular composition alone and is a valuable tool for the efficient design of safer and more sustainable uranium adsorption materials, potentially improving uranium collection processes.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.