Wudu Abiye, Endalamaw Dessie Alebachew, Orhan Dengiz
{"title":"Harnessing machine learning and geospatial technologies for precise soil erodibility mapping and prediction","authors":"Wudu Abiye, Endalamaw Dessie Alebachew, Orhan Dengiz","doi":"10.1007/s12665-025-12270-9","DOIUrl":null,"url":null,"abstract":"<div><p>Soil erosion threatens fertility and sustainability, with soil erodibility influencing erosion rates based on physical and chemical properties. This study aimed to estimate soil erodibility for various land uses using the K-factor from the Wischmeier equation, assess indicators such as the structural stability index, clay ratio, and dispersion ratio, and develop a predictive model for erosion risk using artificial neural networks (ANN) and geospatial technologies. High-resolution spatial maps of erosion risk were created to inform land management and conservation efforts. An ANN model in MATLAB R2024a predicted soil erodibility as well as indicators such as the dispersion ratio, crust formation, and clay ratio. Statistical analyses, including principal component analysis (PCA) and correlation assessment, were performed with OriginPro 2021b to explore relationships between soil properties. Spatial maps of observed and predicted erodibility were created using ArcGIS 10.7.1. Results showed that erodibility values ranged from 0.023 to 0.152 t·ha·hr·MJ<sup>-1</sup>·mm<sup>-1</sup> for the observed data and 0.026 to 0.148 t·ha·hr·MJ<sup>-1</sup>·mm<sup>-1</sup> for the predicted values. For different land uses, it included 0.09513t·ha·hr·MJ<sup>-1</sup>·mm <sup>1</sup> for cultivated land, 0.060796 t·ha· hr·MJ <sup>1</sup> · mm <sup>1</sup> for forest land, and 0.092685 t·ha·hr·MJ<sup>-1</sup>·mm<sup>-1</sup> for pasture land. The ANN model demonstrated high accuracy, with R-values of 0.999 for soil erodibility, 0.996 for the structural stability index (SSI), 0.995 for the clay ratio (CR), and 0.904 for the dispersion ratio (DR). This study effectively combines machine learning and geospatial technologies to predict and map soil erodibility, providing insights for erosion control and sustainable land management.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12665-025-12270-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12270-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil erosion threatens fertility and sustainability, with soil erodibility influencing erosion rates based on physical and chemical properties. This study aimed to estimate soil erodibility for various land uses using the K-factor from the Wischmeier equation, assess indicators such as the structural stability index, clay ratio, and dispersion ratio, and develop a predictive model for erosion risk using artificial neural networks (ANN) and geospatial technologies. High-resolution spatial maps of erosion risk were created to inform land management and conservation efforts. An ANN model in MATLAB R2024a predicted soil erodibility as well as indicators such as the dispersion ratio, crust formation, and clay ratio. Statistical analyses, including principal component analysis (PCA) and correlation assessment, were performed with OriginPro 2021b to explore relationships between soil properties. Spatial maps of observed and predicted erodibility were created using ArcGIS 10.7.1. Results showed that erodibility values ranged from 0.023 to 0.152 t·ha·hr·MJ-1·mm-1 for the observed data and 0.026 to 0.148 t·ha·hr·MJ-1·mm-1 for the predicted values. For different land uses, it included 0.09513t·ha·hr·MJ-1·mm 1 for cultivated land, 0.060796 t·ha· hr·MJ 1 · mm 1 for forest land, and 0.092685 t·ha·hr·MJ-1·mm-1 for pasture land. The ANN model demonstrated high accuracy, with R-values of 0.999 for soil erodibility, 0.996 for the structural stability index (SSI), 0.995 for the clay ratio (CR), and 0.904 for the dispersion ratio (DR). This study effectively combines machine learning and geospatial technologies to predict and map soil erodibility, providing insights for erosion control and sustainable land management.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.