{"title":"ML-Driven Alzheimer’s disease prediction: A deep ensemble modeling approach","authors":"Mustafa Lateef Fadhil Jumaili , Emrullah Sonuç","doi":"10.1016/j.slast.2025.100298","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s disease (AD) is a progressive neurological disorder characterized by cognitive decline due to brain cell death, typically manifesting later in life.Early and accurate detection is critical for effective disease management and treatment. This study proposes an ensemble learning framework that combines five deep learning architectures (VGG16, VGG19, ResNet50, InceptionV3, and EfficientNetB7) to improve the accuracy of AD diagnosis. We use a comprehensive dataset of 3,714 MRI brain scans collected from specialized clinics in Iraq, categorized into three classes: NonDemented (834 images), MildDemented (1,824 images), and VeryDemented (1,056 images). The proposed voting ensemble model achieves a diagnostic accuracy of 99.32% on our dataset. The effectiveness of the model is further validated on two external datasets: OASIS (achieving 86.6% accuracy) and ADNI (achieving 99.5% accuracy), demonstrating competitive performance compared to existing approaches. Moreover, the proposed model exhibits high precision and recall across all stages of dementia, providing a reliable and robust tool for early AD detection. This study highlights the effectiveness of ensemble learning in AD diagnosis and shows promise for clinical applications.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"32 ","pages":"Article 100298"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630325000561","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a progressive neurological disorder characterized by cognitive decline due to brain cell death, typically manifesting later in life.Early and accurate detection is critical for effective disease management and treatment. This study proposes an ensemble learning framework that combines five deep learning architectures (VGG16, VGG19, ResNet50, InceptionV3, and EfficientNetB7) to improve the accuracy of AD diagnosis. We use a comprehensive dataset of 3,714 MRI brain scans collected from specialized clinics in Iraq, categorized into three classes: NonDemented (834 images), MildDemented (1,824 images), and VeryDemented (1,056 images). The proposed voting ensemble model achieves a diagnostic accuracy of 99.32% on our dataset. The effectiveness of the model is further validated on two external datasets: OASIS (achieving 86.6% accuracy) and ADNI (achieving 99.5% accuracy), demonstrating competitive performance compared to existing approaches. Moreover, the proposed model exhibits high precision and recall across all stages of dementia, providing a reliable and robust tool for early AD detection. This study highlights the effectiveness of ensemble learning in AD diagnosis and shows promise for clinical applications.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.