Zihui Qin , Huayue Zhang , Jie Zhang , Tushuai Li , Kamil Kuca , Jiaguo Liu , Wenda Wu
{"title":"Deoxynivalenol induces pyroptosis and IL-1β secretion via P2X7R signal in murine RAW264.7 macrophages","authors":"Zihui Qin , Huayue Zhang , Jie Zhang , Tushuai Li , Kamil Kuca , Jiaguo Liu , Wenda Wu","doi":"10.1016/j.toxicon.2025.108418","DOIUrl":null,"url":null,"abstract":"<div><div>Deoxynivalenol (DON), a trichothecene mycotoxin, exerts pro-inflammatory and immunomodulatory activity. Interleukin (IL)-1β serves a crucial part as a gate keeper of inflammation in DON-induced macrophages, but an overview of how DON exposure elicits IL-1β secretion from RAW264.7 cells has not been fully illustrated. Here we found that the cellular phenomenon, involved with a type of programmed cell death known as pyroptosis, contains: 1) increase of pro-IL-1β expression, 2) motivation of caspase-1, 3) caspase-1-dependent maturement of IL-1β, 4) caspase-1 fragmentation of gasdermin D (GSDMD), and 5) IL-1β secretion through GSDMD pore. Mechanistically, the present study certified that DON both as first and second signals engaged in IL-1β release is mediated by purinergic P2X7 receptor (P2X7R)-Src signaling. During this process, P2X7R signal is required for GSDMD pore forming course in ASC-independent manner. Moreover, blocking of K<sup>+</sup> efflux, ROS formation, as well as cathepsin B activity decreases IL-1β export. Our data show that exposure to DON does cause pyroptosis and IL-1β secretion via P2X7R signal in RAW264.7 macrophages. Overall, these results provide new mechanistic clue for DON as a pro-inflammatory factor in innate immune signaling events.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"263 ","pages":"Article 108418"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010125001928","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin, exerts pro-inflammatory and immunomodulatory activity. Interleukin (IL)-1β serves a crucial part as a gate keeper of inflammation in DON-induced macrophages, but an overview of how DON exposure elicits IL-1β secretion from RAW264.7 cells has not been fully illustrated. Here we found that the cellular phenomenon, involved with a type of programmed cell death known as pyroptosis, contains: 1) increase of pro-IL-1β expression, 2) motivation of caspase-1, 3) caspase-1-dependent maturement of IL-1β, 4) caspase-1 fragmentation of gasdermin D (GSDMD), and 5) IL-1β secretion through GSDMD pore. Mechanistically, the present study certified that DON both as first and second signals engaged in IL-1β release is mediated by purinergic P2X7 receptor (P2X7R)-Src signaling. During this process, P2X7R signal is required for GSDMD pore forming course in ASC-independent manner. Moreover, blocking of K+ efflux, ROS formation, as well as cathepsin B activity decreases IL-1β export. Our data show that exposure to DON does cause pyroptosis and IL-1β secretion via P2X7R signal in RAW264.7 macrophages. Overall, these results provide new mechanistic clue for DON as a pro-inflammatory factor in innate immune signaling events.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.