A result for hemi-bundled cross-intersecting families

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Yongjiang Wu, Lihua Feng, Yongtao Li
{"title":"A result for hemi-bundled cross-intersecting families","authors":"Yongjiang Wu,&nbsp;Lihua Feng,&nbsp;Yongtao Li","doi":"10.1016/j.aam.2025.102912","DOIUrl":null,"url":null,"abstract":"<div><div>Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> are called cross-intersecting if for every <span><math><mi>F</mi><mo>∈</mo><mi>F</mi></math></span> and <span><math><mi>G</mi><mo>∈</mo><mi>G</mi></math></span>, the intersection <span><math><mi>F</mi><mo>∩</mo><mi>G</mi></math></span> is non-empty. It is significant to determine the maximum sum of sizes of cross-intersecting families under the additional assumption that one of the two families is intersecting. Such a pair of families is said to be hemi-bundled. In particular, Frankl (2016) proved that for <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≥</mo><mn>2</mn><mi>k</mi><mo>+</mo><mi>t</mi></math></span>, if <span><math><mi>F</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>t</mi></mrow></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and <span><math><mi>G</mi><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> are cross-intersecting families, in which <span><math><mi>F</mi></math></span> is non-empty and <span><math><mo>(</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-intersecting, then <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn></math></span>. This bound is achieved when <span><math><mi>F</mi></math></span> consists of a single set. In this paper, we generalize this result under the constraint <span><math><mo>|</mo><mi>F</mi><mo>|</mo><mo>≥</mo><mi>r</mi></math></span> for every <span><math><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mi>t</mi><mo>+</mo><mn>1</mn></math></span>. Moreover, we investigate the stability results of Katona's theorem for non-uniform families with the <em>s</em>-union property. Our result extends the stabilities established by Frankl (2017) and Li and Wu (2024). As applications, we revisit a recent result of Frankl and Wang (2024) as well as a result of Kupavskii (2018). Furthermore, we determine the extremal families in these two results.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"169 ","pages":"Article 102912"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000740","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Two families F and G are called cross-intersecting if for every FF and GG, the intersection FG is non-empty. It is significant to determine the maximum sum of sizes of cross-intersecting families under the additional assumption that one of the two families is intersecting. Such a pair of families is said to be hemi-bundled. In particular, Frankl (2016) proved that for k1,t0 and n2k+t, if F([n]k+t) and G([n]k) are cross-intersecting families, in which F is non-empty and (t+1)-intersecting, then |F|+|G|(nk)(nktk)+1. This bound is achieved when F consists of a single set. In this paper, we generalize this result under the constraint |F|r for every rnkt+1. Moreover, we investigate the stability results of Katona's theorem for non-uniform families with the s-union property. Our result extends the stabilities established by Frankl (2017) and Li and Wu (2024). As applications, we revisit a recent result of Frankl and Wang (2024) as well as a result of Kupavskii (2018). Furthermore, we determine the extremal families in these two results.
半捆绑交叉族的结果
如果对于每一个F∈F和G∈G,交集F∩G是非空的,那么两个族F和G被称为交叉交集。在两个族中有一个族相交的附加假设下,确定相交族的最大大小和是有意义的。这样的一对家庭被称为半捆绑。特别是Frankl(2016)证明了k≥1、t≥0、n≥2k+t时,如果F ([n]k+t)和G ([n]k)为交叉的家族,其中F为非空且(t+1)相交,则|F|+|G|≤(nk)−(n−k−tk)+1。当F由一个集合构成时,这个边界就实现了。本文在约束|F|≥r下,对每一个r≤n−k−t+1,推广了这一结果。此外,我们研究了具有s并性质的非一致族的卡托纳定理的稳定性结果。我们的结果扩展了Frankl(2017)和Li和Wu(2024)建立的稳定性。作为应用,我们回顾了Frankl和Wang(2024)的最新结果以及Kupavskii(2018)的结果。进一步,我们确定了这两个结果的极值族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信