An optimization-based positivity-preserving limiter in semi-implicit discontinuous Galerkin schemes solving Fokker–Planck equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Chen Liu , Jingwei Hu , William T. Taitano , Xiangxiong Zhang
{"title":"An optimization-based positivity-preserving limiter in semi-implicit discontinuous Galerkin schemes solving Fokker–Planck equations","authors":"Chen Liu ,&nbsp;Jingwei Hu ,&nbsp;William T. Taitano ,&nbsp;Xiangxiong Zhang","doi":"10.1016/j.camwa.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>For high-order accurate schemes such as discontinuous Galerkin (DG) methods solving Fokker–Planck equations, it is desired to efficiently enforce positivity without losing conservation and high-order accuracy, especially for implicit time discretizations. We consider an optimization-based positivity-preserving limiter for enforcing positivity of cell averages of DG solutions in a semi-implicit time discretization scheme, so that the point values can be easily enforced to be positive by a simple scaling limiter on the DG polynomial in each cell. The optimization can be efficiently solved by a first-order splitting method with nearly optimal parameters, which has an <span><math><mi>O</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> computational complexity and is flexible for parallel computation. Numerical tests are shown on some representative examples to demonstrate the performance of the proposed method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"192 ","pages":"Pages 54-71"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125002068","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For high-order accurate schemes such as discontinuous Galerkin (DG) methods solving Fokker–Planck equations, it is desired to efficiently enforce positivity without losing conservation and high-order accuracy, especially for implicit time discretizations. We consider an optimization-based positivity-preserving limiter for enforcing positivity of cell averages of DG solutions in a semi-implicit time discretization scheme, so that the point values can be easily enforced to be positive by a simple scaling limiter on the DG polynomial in each cell. The optimization can be efficiently solved by a first-order splitting method with nearly optimal parameters, which has an O(N) computational complexity and is flexible for parallel computation. Numerical tests are shown on some representative examples to demonstrate the performance of the proposed method.
求解Fokker-Planck方程的半隐式不连续Galerkin格式中基于优化的正保持极限器
对于求解Fokker-Planck方程的高阶精度格式,如不连续Galerkin (DG)方法,需要在不失去守恒性和高阶精度的情况下有效地执行正性,特别是对于隐式时间离散。在半隐式时间离散方案中,我们考虑了一种基于优化的保正限制器来强制DG解的单元平均值为正,从而可以通过对每个单元的DG多项式的一个简单的标度限制器来方便地强制点值为正。采用近似最优参数的一阶分裂方法可有效求解该优化问题,该方法的计算复杂度为0 (N),可灵活地进行并行计算。通过典型算例的数值试验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信