{"title":"To healthier Ethereum: a comprehensive and iterative smart contract weakness enumeration","authors":"Jiachi Chen, Mingyuan Huang, Zewei Lin, Peilin Zheng, Zibin Zheng","doi":"10.1016/j.bcra.2024.100258","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing popularity of cryptocurrencies and blockchain technologies, smart contracts have become a prominent feature in developing decentralized applications. However, these smart contracts are susceptible to vulnerabilities that hackers can exploit, resulting in significant financial losses. In response to this growing concern, various initiatives have emerged. Notably, the Smart Contract Weakness Classification (SWC) list plays an important role in raising awareness and understanding of smart contract weaknesses. However, the SWC list lacks maintenance and has not been updated with new vulnerabilities since 2020. To address this gap, this paper introduces the Smart Contract Weakness Enumeration (SWE), a comprehensive and practical vulnerability list up until 2023. We collect 273 vulnerability descriptions from 86 top conference papers and journal papers, employing the open card-sorting method to deduplicate and categorize these descriptions. This process results in the identification of 40 common contract weaknesses, which are further classified into 20 sub-research fields through thorough discussion and analysis. The SWE provides a systematic and comprehensive list of smart contract vulnerabilities, covering existing and emerging vulnerabilities in the last few years. Moreover, the SWE is a scalable and continuously iterative program. We propose two update mechanisms for the maintenance of the SWE. Regular updates involve the inclusion of new vulnerabilities from future top papers, while irregular updates enable individuals to report new weaknesses for review and potential addition to the SWE.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100258"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209672092400071X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing popularity of cryptocurrencies and blockchain technologies, smart contracts have become a prominent feature in developing decentralized applications. However, these smart contracts are susceptible to vulnerabilities that hackers can exploit, resulting in significant financial losses. In response to this growing concern, various initiatives have emerged. Notably, the Smart Contract Weakness Classification (SWC) list plays an important role in raising awareness and understanding of smart contract weaknesses. However, the SWC list lacks maintenance and has not been updated with new vulnerabilities since 2020. To address this gap, this paper introduces the Smart Contract Weakness Enumeration (SWE), a comprehensive and practical vulnerability list up until 2023. We collect 273 vulnerability descriptions from 86 top conference papers and journal papers, employing the open card-sorting method to deduplicate and categorize these descriptions. This process results in the identification of 40 common contract weaknesses, which are further classified into 20 sub-research fields through thorough discussion and analysis. The SWE provides a systematic and comprehensive list of smart contract vulnerabilities, covering existing and emerging vulnerabilities in the last few years. Moreover, the SWE is a scalable and continuously iterative program. We propose two update mechanisms for the maintenance of the SWE. Regular updates involve the inclusion of new vulnerabilities from future top papers, while irregular updates enable individuals to report new weaknesses for review and potential addition to the SWE.
期刊介绍:
Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.