Numerical methods of oscillatory Bessel transforms with algebraic and Cauchy singularities

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yingying Jia, Hongchao Kang
{"title":"Numerical methods of oscillatory Bessel transforms with algebraic and Cauchy singularities","authors":"Yingying Jia,&nbsp;Hongchao Kang","doi":"10.1016/j.amc.2025.129523","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes and analyzes fast and precise numerical methods for calculating the Bessel integral, which exhibits rapid oscillations and includes algebraic and Cauchy singularities. When <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, we utilize the numerical steepest descent method with the Gauss-Laguerre quadrature formula to solve it. If <span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>, we partition the integral into two parts, solving each part using the modified Filon-type method and the numerical steepest descent method, respectively. Moreover, the strict error analysis with respect to the frequency parameter <em>ω</em> is provided via a plenty of theoretical analysis. Finally, the efficiency and precision of these proposed methods are validated by numerical examples.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"505 ","pages":"Article 129523"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002498","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes and analyzes fast and precise numerical methods for calculating the Bessel integral, which exhibits rapid oscillations and includes algebraic and Cauchy singularities. When a>0, we utilize the numerical steepest descent method with the Gauss-Laguerre quadrature formula to solve it. If a=0, we partition the integral into two parts, solving each part using the modified Filon-type method and the numerical steepest descent method, respectively. Moreover, the strict error analysis with respect to the frequency parameter ω is provided via a plenty of theoretical analysis. Finally, the efficiency and precision of these proposed methods are validated by numerical examples.
具有代数奇点和柯西奇点的振荡贝塞尔变换的数值方法
本文提出并分析了计算贝塞尔积分的快速、精确的数值方法。贝塞尔积分具有快速振荡,包括代数奇点和柯西奇点。当a>;0时,我们利用数值最陡下降法与高斯-拉盖尔正交公式求解。当a=0时,我们将积分分成两部分,分别使用改进的filon型法和数值最陡下降法求解每一部分。此外,通过大量的理论分析,对频率参数ω进行了严格的误差分析。最后,通过数值算例验证了所提方法的有效性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信