{"title":"Network toxicology and molecular docking to investigate the mechanism of bisphenol A toxicity in human diabetic cardiomyopathy","authors":"Bo Li , Xu Zhao , Yan Ding , Yi Zhang","doi":"10.1016/j.ecoenv.2025.118301","DOIUrl":null,"url":null,"abstract":"<div><div>Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is widely used in polymers, plasticizers, and food packaging, raising significant concerns for human health. Growing evidence links BPA exposure to cardiovascular diseases, including diabetic cardiomyopathy (DCM), a severe complication of diabetes characterized by myocardial dysfunction. This study employs an integrative approach combining network toxicology and molecular docking to elucidate the molecular mechanisms underlying BPA-induced DCM. Using computational tools such as ADMETlab2.0, ProTox3.0, GeneCards, OMIM, Swiss Target Prediction, and ChEMBL databases, we systematically predicted BPA's potential to induce DCM and constructed comprehensive disease and BPA target libraries. Venn diagram analysis identified 93 potential targets associated with BPA-induced DCM, and a robust BPA regulatory network was established using Cytoscape. Functional enrichment analyses revealed significant involvement of oxidative stress, insulin signaling, and metabolic pathways in BPA toxicity. Molecular docking simulations demonstrated stable binding interactions between BPA and core targets (INS, AKT1, PPARG, STAT3, PPARA, MMP9), with binding energies ranging from −5.3 to −7.5 kcal/mol. Our findings indicate that BPA may induce DCM through key genes and pathways, including cGMP−PKG signaling pathway, insulin signaling pathway, AMPK signaling pathway, and HIF−1 signaling pathway. This study provides a novel theoretical framework for understanding the molecular pathogenesis of BPA-induced DCM and highlights the potential of network toxicology in identifying toxic pathways for uncharacterized environmental compounds. These insights offer potential targets for preventive and therapeutic strategies against BPA-associated cardiovascular complications.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"299 ","pages":"Article 118301"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325006372","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is widely used in polymers, plasticizers, and food packaging, raising significant concerns for human health. Growing evidence links BPA exposure to cardiovascular diseases, including diabetic cardiomyopathy (DCM), a severe complication of diabetes characterized by myocardial dysfunction. This study employs an integrative approach combining network toxicology and molecular docking to elucidate the molecular mechanisms underlying BPA-induced DCM. Using computational tools such as ADMETlab2.0, ProTox3.0, GeneCards, OMIM, Swiss Target Prediction, and ChEMBL databases, we systematically predicted BPA's potential to induce DCM and constructed comprehensive disease and BPA target libraries. Venn diagram analysis identified 93 potential targets associated with BPA-induced DCM, and a robust BPA regulatory network was established using Cytoscape. Functional enrichment analyses revealed significant involvement of oxidative stress, insulin signaling, and metabolic pathways in BPA toxicity. Molecular docking simulations demonstrated stable binding interactions between BPA and core targets (INS, AKT1, PPARG, STAT3, PPARA, MMP9), with binding energies ranging from −5.3 to −7.5 kcal/mol. Our findings indicate that BPA may induce DCM through key genes and pathways, including cGMP−PKG signaling pathway, insulin signaling pathway, AMPK signaling pathway, and HIF−1 signaling pathway. This study provides a novel theoretical framework for understanding the molecular pathogenesis of BPA-induced DCM and highlights the potential of network toxicology in identifying toxic pathways for uncharacterized environmental compounds. These insights offer potential targets for preventive and therapeutic strategies against BPA-associated cardiovascular complications.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.