{"title":"An \"inside-out\"-guided genetically engineered hydrogel for augmenting aged bone regeneration","authors":"Yanrun Zhu , Lili Sun , Mingzhuang Hou , Jianfeng Yu , Chenqi Yu , Zihan Zhang , Huilin Yang , Changsheng Liu , Lixin Huang , Dinghua Jiang , Yijian Zhang , Yuan Yuan , Xuesong Zhu","doi":"10.1016/j.bioactmat.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>Senescent bone repair faces significant obstacles due to reduced cellular activity and an unfavorable microenvironment, both of which hinder the osteogenic differentiation of bone marrow-derived stem cells (BMSCs) into osteoblasts (OBs) and subsequent bone formation. Current approaches primarily target senescent cell clearance (senolytics) or suppression of the senescence-associated secretory phenotype (senomorphics), neglecting the complex interactions between BMSCs and the osteogenic microenvironment. In this study, a genetically engineered hydrogel incorporating NAD-dependent deacetylase sirtuins 3 (SIRT3)-loaded nano-vectors and poly (glycerol sebacate)-co-poly (ethylene glycol)/polyacrylic acid (PEGS/PAA) was developed as an “inside-out” strategy for bone regeneration. At the intracellular level, BMSC function is restored, and osteogenesis is promoted through genetically enhanced SIRT3 expression. At the extracellular level, carboxyl functional groups chelate iron ions, simulating a hypoxic environment and promoting synergistic interactions between angiogenesis and osteogenesis. The therapeutic effects of the genetically engineered hydrogel in alleviating senescent damage and enhancing osteogenic differentiation were confirmed in both chemically and naturally induced senescence models <em>in vitro</em>. Local delivery of the hydrogel significantly increased newly formed bone in rat cranial defects. Mechanistically, the central role of SIRT3 in balancing senescence and osteogenesis, as well as its involvement in bone immune signaling pathways, was elucidated through CRISPR/Cas9-mediated editing in mice and transcriptome sequencing. This work presents a novel paradigm that integrates cellular and microenvironmental factors to enhance bone regeneration, offering new hope for treating age-related bone injuries.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"51 ","pages":"Pages 318-332"},"PeriodicalIF":18.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001896","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Senescent bone repair faces significant obstacles due to reduced cellular activity and an unfavorable microenvironment, both of which hinder the osteogenic differentiation of bone marrow-derived stem cells (BMSCs) into osteoblasts (OBs) and subsequent bone formation. Current approaches primarily target senescent cell clearance (senolytics) or suppression of the senescence-associated secretory phenotype (senomorphics), neglecting the complex interactions between BMSCs and the osteogenic microenvironment. In this study, a genetically engineered hydrogel incorporating NAD-dependent deacetylase sirtuins 3 (SIRT3)-loaded nano-vectors and poly (glycerol sebacate)-co-poly (ethylene glycol)/polyacrylic acid (PEGS/PAA) was developed as an “inside-out” strategy for bone regeneration. At the intracellular level, BMSC function is restored, and osteogenesis is promoted through genetically enhanced SIRT3 expression. At the extracellular level, carboxyl functional groups chelate iron ions, simulating a hypoxic environment and promoting synergistic interactions between angiogenesis and osteogenesis. The therapeutic effects of the genetically engineered hydrogel in alleviating senescent damage and enhancing osteogenic differentiation were confirmed in both chemically and naturally induced senescence models in vitro. Local delivery of the hydrogel significantly increased newly formed bone in rat cranial defects. Mechanistically, the central role of SIRT3 in balancing senescence and osteogenesis, as well as its involvement in bone immune signaling pathways, was elucidated through CRISPR/Cas9-mediated editing in mice and transcriptome sequencing. This work presents a novel paradigm that integrates cellular and microenvironmental factors to enhance bone regeneration, offering new hope for treating age-related bone injuries.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.