Reducing subspaces for strictly lower triangular operators

IF 1.2 3区 数学 Q1 MATHEMATICS
Yanlin Liu , Yufeng Lu , Yanyue Shi , Xiaoping Xu
{"title":"Reducing subspaces for strictly lower triangular operators","authors":"Yanlin Liu ,&nbsp;Yufeng Lu ,&nbsp;Yanyue Shi ,&nbsp;Xiaoping Xu","doi":"10.1016/j.jmaa.2025.129683","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish a lattice isomorphism between the lattice of all reducing subspaces of a strictly lower triangular operator <em>S</em> and a sublattice of certain closed subspaces of <span><math><mi>ker</mi><mo>⁡</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. Here a strictly lower triangular operator means a bounded operator <em>S</em> on a Hilbert space <em>H</em> with <span><math><msubsup><mrow><mo>∩</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mover><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>‾</mo></mover><mo>=</mo><mn>0</mn></math></span>, or equivalently, <em>S</em> possess a strictly lower triangular block matrix representation. Every unilateral operator-weighted shift is a strictly lower triangular operator. And many Toeplitz operators on function spaces are translations of strictly lower triangular operators. Further, we prove that every nonzero reducing subspace <em>X</em> of <em>S</em> satisfying <span><math><mi>dim</mi><mo>⁡</mo><mi>X</mi><mo>∩</mo><mi>ker</mi><mo>⁡</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>&lt;</mo><mo>∞</mo></math></span> can be expressed as a direct sum of at most <span><math><mi>dim</mi><mo>⁡</mo><mi>X</mi><mo>∩</mo><mi>ker</mi><mo>⁡</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> minimal reducing subspaces. As an application, we characterize the reducing spaces of Toeplitz operators induced by quasi-homogeneous functions on <em>n</em>-analytic Bergman space. In particular, we show that <span><math><msub><mrow><mi>T</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></msub></math></span> with <span><math><mi>q</mi><mo>≥</mo><mn>1</mn></math></span> on 2-analytic Bergman space has <em>q</em> minimal reducing subspaces. Moreover, we show that the von Neumann algebra generated by the commutants of <span><math><msub><mrow><mi>T</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></msub></math></span> and <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><msup><mrow><mi>z</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, is ⁎-isomorphic to <span><math><msubsup><mrow><mo>⊕</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>q</mi></mrow></msubsup><mi>C</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129683"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004640","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a lattice isomorphism between the lattice of all reducing subspaces of a strictly lower triangular operator S and a sublattice of certain closed subspaces of kerS. Here a strictly lower triangular operator means a bounded operator S on a Hilbert space H with n=0Sn(H)=0, or equivalently, S possess a strictly lower triangular block matrix representation. Every unilateral operator-weighted shift is a strictly lower triangular operator. And many Toeplitz operators on function spaces are translations of strictly lower triangular operators. Further, we prove that every nonzero reducing subspace X of S satisfying dimXkerS< can be expressed as a direct sum of at most dimXkerS minimal reducing subspaces. As an application, we characterize the reducing spaces of Toeplitz operators induced by quasi-homogeneous functions on n-analytic Bergman space. In particular, we show that Tzq with q1 on 2-analytic Bergman space has q minimal reducing subspaces. Moreover, we show that the von Neumann algebra generated by the commutants of Tzq and Tzq, is ⁎-isomorphic to k=1qC.
严格下三角算子的约简子空间
本文建立了严格下三角算子S的所有约化子空间的格与ker²S²的某些闭子空间的子格之间的格同构。这里严格下三角算子是指希尔伯特空间H上∩n=0∞Sn(H)≠0的有界算子S,或者等价地,S具有严格下三角块矩阵表示。每个单边算子加权移位都是一个严格的下三角算子。函数空间上的很多Toeplitz算子都是严格下三角算子的平移。进一步证明了S的每一个满足dim X∩ker²S <;∞的非零约简子空间X可以表示为不超过dim X∩ker²S最小约简子空间的直接和。作为应用,我们刻画了n解析Bergman空间上拟齐次函数诱导的Toeplitz算子的约简空间。特别地,我们证明了在2解析Bergman空间上q≥1的Tzq有q个最小约简子空间。此外,我们还证明了由Tzq和Tzq交换子生成的von Neumann代数与⊕k=1qC是-同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信