{"title":"Information fusion based conflict analysis model for multi-source fuzzy data","authors":"Xinxin Tang , Mengyu Yan , Jinhai Li , Fei Hao","doi":"10.1016/j.ijar.2025.109472","DOIUrl":null,"url":null,"abstract":"<div><div>Conflict is ubiquitous in life. Conflict analysis is a tool for understanding conflicts, whose aim is to analyze the conflict situations in data to help decision makers avoid risks. Existing conflict analysis methods mainly focus on single-source data. However, the emergence of big data era has generated more complex data, such as multi-source data obtained from different perspectives, which can capture details that single-source data is missing. Not only that, most data also exhibit characteristics of fuzziness. The above situations make it more challenging to construct a conflict analysis model in the environment of multi-source fuzzy data to acquire a compliant decision. Therefore, conflict analysis for multi-source fuzzy data is a worthy research topic. However, the existing few studies on multi-source fuzzy data either favor attribute values or ignore conflict resolution, which reduces the conflict resolution performance due to underutilizing attribute information. To solve the above problem, we divide the attribute values of multi-source fuzzy data into three attitude intervals to distinguish different attitudes of agents. Then, we propose a function to measure conflict and construct a conflict analysis model for a multi-source fuzzy formal context. Additionally, we put forward an information fusion method based on the minimum of fuzzy entropy, whose purpose is to achieve conflict resolution quickly. Finally, experiments conducted on 18 datasets demonstrate that our information fusion method can achieve conflict resolution effectively, and provide a useful reference for decision-makers.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"185 ","pages":"Article 109472"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001136","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Conflict is ubiquitous in life. Conflict analysis is a tool for understanding conflicts, whose aim is to analyze the conflict situations in data to help decision makers avoid risks. Existing conflict analysis methods mainly focus on single-source data. However, the emergence of big data era has generated more complex data, such as multi-source data obtained from different perspectives, which can capture details that single-source data is missing. Not only that, most data also exhibit characteristics of fuzziness. The above situations make it more challenging to construct a conflict analysis model in the environment of multi-source fuzzy data to acquire a compliant decision. Therefore, conflict analysis for multi-source fuzzy data is a worthy research topic. However, the existing few studies on multi-source fuzzy data either favor attribute values or ignore conflict resolution, which reduces the conflict resolution performance due to underutilizing attribute information. To solve the above problem, we divide the attribute values of multi-source fuzzy data into three attitude intervals to distinguish different attitudes of agents. Then, we propose a function to measure conflict and construct a conflict analysis model for a multi-source fuzzy formal context. Additionally, we put forward an information fusion method based on the minimum of fuzzy entropy, whose purpose is to achieve conflict resolution quickly. Finally, experiments conducted on 18 datasets demonstrate that our information fusion method can achieve conflict resolution effectively, and provide a useful reference for decision-makers.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.