{"title":"Responses of Microcystis aeruginosa to Polystyrene Microplastics: Growth Dynamics and Implications for Water Treatment","authors":"Decai Liu, Zhiyong Zhang, Lei Xu, Ming-Lai Fu, Wenjie Sun, Baoling Yuan","doi":"10.1016/j.jhazmat.2025.138650","DOIUrl":null,"url":null,"abstract":"The understanding of microplastics (MPs) has advanced significantly with their accumulation in aquatic environments, but their potential impact on cyanobacterial blooms remains inadequately understood. Herein, the dynamic fluctuating effects of polystyrene (PS) on <em>Microcystis aeruginosa</em> were investigated throughout its growth cycle, as well as the action of algal organic matter in the disinfection by-products formation. The maximum inhibition of algal cell growth and phycobiliprotein content by PS during the adaptation phase reached 56.3% and 76.3%, respectively. With the extension of exposure time, the inhibitory effect gradually transitions into promotive effect. PS exposure increased the content of extracellular organic matter and enhanced the THMs formation during chlorination, with trihalomethanes concentrations of 62.8 and 101.9<!-- --> <!-- -->μg/L in the control and PS treatment groups, respectively. Moreover, the reactive oxygen species levels in PS-exposed algal cells were only 71.5% of those in the control group, and total antioxidant capacity levels, superoxide dismutase and catalase activities were also lower. However, the microcystin content exposed PS was increased to 1.2 times that of the control group. The presence of PS in aquatic environments increases the levels of algal organic matter and microcystin, potentially threatening water quality. This study provides new insights into the combined effects of microplastics on freshwater algae and valuable data on potential risk associated with MPs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"121 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138650","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The understanding of microplastics (MPs) has advanced significantly with their accumulation in aquatic environments, but their potential impact on cyanobacterial blooms remains inadequately understood. Herein, the dynamic fluctuating effects of polystyrene (PS) on Microcystis aeruginosa were investigated throughout its growth cycle, as well as the action of algal organic matter in the disinfection by-products formation. The maximum inhibition of algal cell growth and phycobiliprotein content by PS during the adaptation phase reached 56.3% and 76.3%, respectively. With the extension of exposure time, the inhibitory effect gradually transitions into promotive effect. PS exposure increased the content of extracellular organic matter and enhanced the THMs formation during chlorination, with trihalomethanes concentrations of 62.8 and 101.9 μg/L in the control and PS treatment groups, respectively. Moreover, the reactive oxygen species levels in PS-exposed algal cells were only 71.5% of those in the control group, and total antioxidant capacity levels, superoxide dismutase and catalase activities were also lower. However, the microcystin content exposed PS was increased to 1.2 times that of the control group. The presence of PS in aquatic environments increases the levels of algal organic matter and microcystin, potentially threatening water quality. This study provides new insights into the combined effects of microplastics on freshwater algae and valuable data on potential risk associated with MPs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.