{"title":"Extracting True Virus SERS Spectra and Augmenting Data for Improved Virus Classification and Quantification","authors":"Yufang Liu, Yanjun Yang, Haoran Lu, Jiaheng Cui, Xianyan Chen, Ping Ma, Wenxuan Zhong, Yiping Zhao","doi":"10.1021/acssensors.4c03397","DOIUrl":null,"url":null,"abstract":"Surface-enhanced Raman spectroscopy (SERS) is a transformative tool for infectious disease diagnostics, offering rapid and sensitive species identification. However, background spectra in biological samples complicate analyte peak detection, increase the limit of detection, and hinder data augmentation. To address these challenges, we developed a deep learning framework utilizing dual neural networks to extract true virus SERS spectra and estimate concentration coefficients in water for 12 different respiratory viruses. The extracted spectra showed a high similarity to those obtained at the highest viral concentration, validating their accuracy. Using these spectra and the derived concentration coefficients, we augmented spectral data sets across varying virus concentrations in water. XGBoost models trained on these augmented data sets achieved overall classification and concentration prediction accuracy of 92.3% with a coefficient of determination (<i>R</i><sup>2</sup>) > 0.95. Additionally, the extracted spectra and coefficients were used to augment data sets in saliva backgrounds. When tested against real virus-in-saliva spectra, the augmented spectra-trained XGBoost models achieved 91.9% accuracy in classification and concentration prediction with <i>R</i><sup>2</sup> > 0.9, demonstrating the robustness of the approach. By delivering clean and uncontaminated spectra, this methodology can significantly improve species identification, differentiation, and quantification and advance SERS-based detection and diagnostics.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"233 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03397","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a transformative tool for infectious disease diagnostics, offering rapid and sensitive species identification. However, background spectra in biological samples complicate analyte peak detection, increase the limit of detection, and hinder data augmentation. To address these challenges, we developed a deep learning framework utilizing dual neural networks to extract true virus SERS spectra and estimate concentration coefficients in water for 12 different respiratory viruses. The extracted spectra showed a high similarity to those obtained at the highest viral concentration, validating their accuracy. Using these spectra and the derived concentration coefficients, we augmented spectral data sets across varying virus concentrations in water. XGBoost models trained on these augmented data sets achieved overall classification and concentration prediction accuracy of 92.3% with a coefficient of determination (R2) > 0.95. Additionally, the extracted spectra and coefficients were used to augment data sets in saliva backgrounds. When tested against real virus-in-saliva spectra, the augmented spectra-trained XGBoost models achieved 91.9% accuracy in classification and concentration prediction with R2 > 0.9, demonstrating the robustness of the approach. By delivering clean and uncontaminated spectra, this methodology can significantly improve species identification, differentiation, and quantification and advance SERS-based detection and diagnostics.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.