Spin-torque skyrmion resonance in a frustrated magnet

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nirel Bernstein, Hang Li, Benjamin Assouline, Yong-Chang Lau, Igor Rozhansky, Wenhong Wang, Amir Capua
{"title":"Spin-torque skyrmion resonance in a frustrated magnet","authors":"Nirel Bernstein, Hang Li, Benjamin Assouline, Yong-Chang Lau, Igor Rozhansky, Wenhong Wang, Amir Capua","doi":"10.1038/s41467-025-59899-5","DOIUrl":null,"url":null,"abstract":"<p>The frustrated Fe<sub>3</sub>Sn<sub>2</sub> magnet is technologically attractive due to its extreme-temperature skyrmion stability, large topological Hall effect, and current-induced helicity switching attributed to a self-induced spin-torque. Here, we present a current-driven skyrmion resonance technique excited by self-induced spin-torque in Fe<sub>3</sub>Sn<sub>2</sub>. The dynamics are probed optically in a time-resolved measurement enabling us to distinguish between the excited modes. We find that only the breathing and rotational counterclockwise modes are excited, rather than the three modes typically observed in Dzyaloshinskii-Moriya interaction-dominated magnetic textures. When a DC current is passed through the crystal, the skyrmion resonance linewidth is modulated. Our micromagnetic simulations indicate that the linewidth broadening arises from an effective damping-like spin-orbit torque. Accordingly, we extract an effective spin Hall conductivity of <span>\\(\\sim {{\\bf{793}}}\\,\\pm {{\\bf{176}}}\\,\\left({{\\hslash }}/{{\\boldsymbol{e}}}\\right)\\,{\\left({{\\bf{\\Omega}}} \\; {{\\bf{cm}}}\\right)}^{-{{\\bf{1}}}}\\)</span>. Complementary planar Hall measurements suggest a small yet finite contribution of the real-space spin texture in the electronic transport in addition to a primary <span>\\({{\\boldsymbol{k}}}\\)</span>-space contribution. Our results bring new insights into the anisotropic nature of spin-torques in frustrated magnets and to the possibility of using the skyrmion resonance as a sensor for spin currents.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"33 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59899-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The frustrated Fe3Sn2 magnet is technologically attractive due to its extreme-temperature skyrmion stability, large topological Hall effect, and current-induced helicity switching attributed to a self-induced spin-torque. Here, we present a current-driven skyrmion resonance technique excited by self-induced spin-torque in Fe3Sn2. The dynamics are probed optically in a time-resolved measurement enabling us to distinguish between the excited modes. We find that only the breathing and rotational counterclockwise modes are excited, rather than the three modes typically observed in Dzyaloshinskii-Moriya interaction-dominated magnetic textures. When a DC current is passed through the crystal, the skyrmion resonance linewidth is modulated. Our micromagnetic simulations indicate that the linewidth broadening arises from an effective damping-like spin-orbit torque. Accordingly, we extract an effective spin Hall conductivity of \(\sim {{\bf{793}}}\,\pm {{\bf{176}}}\,\left({{\hslash }}/{{\boldsymbol{e}}}\right)\,{\left({{\bf{\Omega}}} \; {{\bf{cm}}}\right)}^{-{{\bf{1}}}}\). Complementary planar Hall measurements suggest a small yet finite contribution of the real-space spin texture in the electronic transport in addition to a primary \({{\boldsymbol{k}}}\)-space contribution. Our results bring new insights into the anisotropic nature of spin-torques in frustrated magnets and to the possibility of using the skyrmion resonance as a sensor for spin currents.

Abstract Image

受挫磁体中的自旋-转矩斯基子共振
Fe3Sn2磁铁在技术上具有吸引力,因为它具有极端温度的skyrmion稳定性,大的拓扑霍尔效应,以及由于自诱导自旋扭矩而引起的电流诱导螺旋开关。在这里,我们提出了一种由Fe3Sn2中自激自旋转矩激发的电流驱动的skyrmion共振技术。动力学是在一个时间分辨的测量光学探测,使我们能够区分激发模式。我们发现只有呼吸和逆时针旋转模式被激发,而不是在Dzyaloshinskii-Moriya相互作用主导的磁结构中通常观察到的三种模式。当直流电流通过晶体时,斯基米子共振线宽被调制。我们的微磁模拟表明,线宽增宽是由有效的类阻尼自旋轨道转矩引起的。因此,我们提取了有效的自旋霍尔电导率\(\sim {{\bf{793}}}\,\pm {{\bf{176}}}\,\left({{\hslash }}/{{\boldsymbol{e}}}\right)\,{\left({{\bf{\Omega}}} \; {{\bf{cm}}}\right)}^{-{{\bf{1}}}}\)。互补平面霍尔测量表明,除了主要的\({{\boldsymbol{k}}}\)空间贡献外,实空间自旋织构在电子输运中的贡献很小,但有限。我们的研究结果为受挫磁体中自旋力矩的各向异性特性带来了新的见解,并为使用skyrmion共振作为自旋电流传感器的可能性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信