Hong Sheng Cheng, Yee Han Tey, Si Yuan Hu, Alethea Yen Ning Yeo, Zong Heng Ngo, Joseph Han Sol Kim, Nguan Soon Tan
{"title":"Advancements and Challenges in Modeling Mechanobiology in Intestinal Host-Microbiota Interaction","authors":"Hong Sheng Cheng, Yee Han Tey, Si Yuan Hu, Alethea Yen Ning Yeo, Zong Heng Ngo, Joseph Han Sol Kim, Nguan Soon Tan","doi":"10.1021/acsami.4c20961","DOIUrl":null,"url":null,"abstract":"The gastrointestinal tract is a dynamic biomechanical environment where physical forces, cellular processes, and microbial interactions converge to shape the gut health and disease. In this review, we examine the unique mechanical properties of the gut, including peristalsis, viscoelasticity, shear stress, and tissue stiffness, and their roles in modulating host mechanosignaling and microbial behavior under physiological and pathological conditions. We discuss how these mechanical forces regulate gut epithelial integrity, immune responses, and microbial colonization, leading to distinct ecological niches across different intestinal segments. Furthermore, we highlight recent advancements in 3D culture systems and gut-on-a-chip models that accurately recapitulate the complex interplay between biomechanics and gut microbiota. By elucidating the intricate relationship between mechanobiology and gut function, this review underscores the potential for mechanotherapeutic strategies to modulate host-microbe interactions, offering promising avenues for the prevention and treatment of disorders such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"74 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20961","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The gastrointestinal tract is a dynamic biomechanical environment where physical forces, cellular processes, and microbial interactions converge to shape the gut health and disease. In this review, we examine the unique mechanical properties of the gut, including peristalsis, viscoelasticity, shear stress, and tissue stiffness, and their roles in modulating host mechanosignaling and microbial behavior under physiological and pathological conditions. We discuss how these mechanical forces regulate gut epithelial integrity, immune responses, and microbial colonization, leading to distinct ecological niches across different intestinal segments. Furthermore, we highlight recent advancements in 3D culture systems and gut-on-a-chip models that accurately recapitulate the complex interplay between biomechanics and gut microbiota. By elucidating the intricate relationship between mechanobiology and gut function, this review underscores the potential for mechanotherapeutic strategies to modulate host-microbe interactions, offering promising avenues for the prevention and treatment of disorders such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.