Mert Öktem , Thai Hoang Nguyen , Esmeralda D.C. Bosman , Marcel H.A.M. Fens , Massimiliano Caiazzo , Enrico Mastrobattista , Zhiyong Lei , Olivier G. de Jong
{"title":"Lipopeptide-mediated delivery of CRISPR/Cas9 ribonucleoprotein complexes for gene editing and correction","authors":"Mert Öktem , Thai Hoang Nguyen , Esmeralda D.C. Bosman , Marcel H.A.M. Fens , Massimiliano Caiazzo , Enrico Mastrobattista , Zhiyong Lei , Olivier G. de Jong","doi":"10.1016/j.jconrel.2025.113854","DOIUrl":null,"url":null,"abstract":"<div><div>CRISPR/Cas gene editing is a highly promising technology for the treatment and even potential cure of genetic diseases. One of the major challenges for its therapeutic use is finding safe and effective vehicles for intracellular delivery of the CRISPR/Cas9 ribonucleoprotein (RNP) complex. In this study, we tested and characterized a series of novel fatty acid-modified versions of a previously reported Cas9 RNP carrier, consisting of a complex of the cell-penetrating peptide (CPP) LAH5 with Cas9 RNP and homology-directed DNA repair templates. Comparative experiments demonstrated that RNP/peptide nanocomplexes showed various improvements depending on the type of fatty acid modification. These improvements included enhanced stability in serum, improved membrane disruption capability and increased transfection efficacy. Cas9 RNP/oleic acid LAH5 peptide nanocomplexes showed the overall best performance for both gene editing and correction. Moreover, Cas9 RNP/oleic acid LAH5 nanocomplexes significantly protected the Cas9 protein cargo from enzymatic protease digestion. In addition, in vivo testing demonstrated successful gene editing after intramuscular administration. Despite the inherent barriers of the tightly organized muscle tissues, we achieved approximately 10 % gene editing in the skeletal muscle tissues when targeting the CAG-tdTomato locus in the transgenic Ai9 Cre-LoxP reporter mouse strain and 7 % gene editing when targeting the <em>Ccr5</em> gene, without any observable short-term toxicity. In conclusion, the oleic acid-modified LAH5 peptide is an effective delivery platform for direct Cas9/RNP delivery, and holds great potential for the development of new CRISPR/Cas9-based therapeutic applications for the treatment of genetic diseases.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"383 ","pages":"Article 113854"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925004742","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR/Cas gene editing is a highly promising technology for the treatment and even potential cure of genetic diseases. One of the major challenges for its therapeutic use is finding safe and effective vehicles for intracellular delivery of the CRISPR/Cas9 ribonucleoprotein (RNP) complex. In this study, we tested and characterized a series of novel fatty acid-modified versions of a previously reported Cas9 RNP carrier, consisting of a complex of the cell-penetrating peptide (CPP) LAH5 with Cas9 RNP and homology-directed DNA repair templates. Comparative experiments demonstrated that RNP/peptide nanocomplexes showed various improvements depending on the type of fatty acid modification. These improvements included enhanced stability in serum, improved membrane disruption capability and increased transfection efficacy. Cas9 RNP/oleic acid LAH5 peptide nanocomplexes showed the overall best performance for both gene editing and correction. Moreover, Cas9 RNP/oleic acid LAH5 nanocomplexes significantly protected the Cas9 protein cargo from enzymatic protease digestion. In addition, in vivo testing demonstrated successful gene editing after intramuscular administration. Despite the inherent barriers of the tightly organized muscle tissues, we achieved approximately 10 % gene editing in the skeletal muscle tissues when targeting the CAG-tdTomato locus in the transgenic Ai9 Cre-LoxP reporter mouse strain and 7 % gene editing when targeting the Ccr5 gene, without any observable short-term toxicity. In conclusion, the oleic acid-modified LAH5 peptide is an effective delivery platform for direct Cas9/RNP delivery, and holds great potential for the development of new CRISPR/Cas9-based therapeutic applications for the treatment of genetic diseases.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.