Magnetoliposomes for nanomedicine: synthesis, characterization, and applications in drug, gene, and peptide delivery.

Cristian F Rodríguez, Paula Guzmán-Sastoque, Alan Santacruz-Belalcazar, Coryna Rodriguez, Paula Villamarin, Luis H Reyes, Juan C Cruz
{"title":"Magnetoliposomes for nanomedicine: synthesis, characterization, and applications in drug, gene, and peptide delivery.","authors":"Cristian F Rodríguez, Paula Guzmán-Sastoque, Alan Santacruz-Belalcazar, Coryna Rodriguez, Paula Villamarin, Luis H Reyes, Juan C Cruz","doi":"10.1080/17425247.2025.2506829","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Magnetoliposomes represent a transformative advancement in nanomedicine by integrating magnetic nanoparticles with liposomal structures, creating multifunctional delivery platforms that overcome key limitations of conventional drug carriers. These hybrid systems enable precision targeting through external magnetic fields, controlled release via magnetic hyperthermia, and real-time theranostic capabilities, offering unprecedented spatiotemporal control over therapeutic administration.</p><p><strong>Areas covered: </strong>This manuscript focused primarily on studies from 2023-2025 however, a few select older references were included to provide background and context.This review examines the fundamental design principles of Magnetoliposomes, including bilayer composition, nanoparticle integration strategies, and physicochemical properties governing their biological performance. We comprehensively assess synthesis methodologies - from traditional thin-film hydration to advanced microfluidic approaches - highlighting their impact on colloidal stability, drug encapsulation, and scaling potential. Characterization techniques essential for quality control and regulatory approval are systematically reviewed, followed by applications across oncology, gene delivery, neurology, and infectious disease treatment, supported by recent experimental evidence.</p><p><strong>Expert opinion: </strong>While magnetoliposomes show remarkable therapeutic versatility, their clinical translation requires addressing biocompatibility concerns, manufacturing scalability, and regulatory hurdles. Integration with artificial intelligence, organ-on-chip technologies, and personalized medicine approaches will likely accelerate their development toward clinical reality, potentially revolutionizing treatment paradigms for complex diseases through tailored therapeutic interventions.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-30"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2506829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Magnetoliposomes represent a transformative advancement in nanomedicine by integrating magnetic nanoparticles with liposomal structures, creating multifunctional delivery platforms that overcome key limitations of conventional drug carriers. These hybrid systems enable precision targeting through external magnetic fields, controlled release via magnetic hyperthermia, and real-time theranostic capabilities, offering unprecedented spatiotemporal control over therapeutic administration.

Areas covered: This manuscript focused primarily on studies from 2023-2025 however, a few select older references were included to provide background and context.This review examines the fundamental design principles of Magnetoliposomes, including bilayer composition, nanoparticle integration strategies, and physicochemical properties governing their biological performance. We comprehensively assess synthesis methodologies - from traditional thin-film hydration to advanced microfluidic approaches - highlighting their impact on colloidal stability, drug encapsulation, and scaling potential. Characterization techniques essential for quality control and regulatory approval are systematically reviewed, followed by applications across oncology, gene delivery, neurology, and infectious disease treatment, supported by recent experimental evidence.

Expert opinion: While magnetoliposomes show remarkable therapeutic versatility, their clinical translation requires addressing biocompatibility concerns, manufacturing scalability, and regulatory hurdles. Integration with artificial intelligence, organ-on-chip technologies, and personalized medicine approaches will likely accelerate their development toward clinical reality, potentially revolutionizing treatment paradigms for complex diseases through tailored therapeutic interventions.

纳米医学磁性脂质体:合成、表征及其在药物、基因和肽传递中的应用。
磁性脂质体通过将磁性纳米颗粒与脂质体结构相结合,创造了多功能的给药平台,克服了传统药物载体的关键限制,代表了纳米医学的革命性进步。这些混合系统通过外部磁场实现精确靶向,通过磁热疗控制释放,以及实时治疗能力,为治疗管理提供前所未有的时空控制。涵盖领域:本文主要关注2023-2025年的研究,但也包括一些精选的旧参考文献,以提供背景和背景。本文综述了磁性脂质体的基本设计原理,包括双层组成、纳米颗粒整合策略和控制其生物性能的理化性质。我们全面评估了合成方法-从传统的薄膜水化到先进的微流体方法-强调了它们对胶体稳定性,药物包封和结垢潜力的影响。对质量控制和监管审批必不可少的表征技术进行了系统审查,随后在肿瘤学、基因传递、神经学和传染病治疗方面的应用得到了最近实验证据的支持。专家意见:虽然磁性脂质体显示出显著的治疗多功能性,但它们的临床转化需要解决生物相容性问题、制造可扩展性和监管障碍。与人工智能、器官芯片技术和个性化医疗方法的整合可能会加速它们向临床现实的发展,通过量身定制的治疗干预,可能会彻底改变复杂疾病的治疗模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信