{"title":"Pioneering bactericidal efficacy with nitrogen doping and zinc oxide nanoparticle decoration on carbon nanosheets†","authors":"Omnarayan Agrawal, Bani Preet Kaur, Radhika Chaurasia, Hitesh Kumar Sharma, Geetika Jain, Madhav Krishn Goswami, Sandip Chakrabarti and Monalisa Mukherjee","doi":"10.1039/D5TB00516G","DOIUrl":null,"url":null,"abstract":"<p >The escalating prevalence of drug-resistant pathogens poses a significant threat to global health, contributing to elevated mortality rates and inflated healthcare expenses. To combat antibacterial resistance, carbon-based nanocomposites incorporating metal oxides have emerged as a promising solution in the development of advanced antibacterial agents. In this quest, we propose a nascent strategy to synthesize zinc oxide-decorated carbon nanosheets (ZnO@CNSn) <em>via</em> a co-precipitation method. The crystalline ZnO nanoparticles (ZnO-NPs) are homogeneously dispersed throughout a framework of melamine-enriched carbon nanosheets (CNSn). The presence of pyrrolic-N and pyridinic-N functionalities in ZnO@CNSn enhances the charge transfer kinetics and creates nucleation sites for uniform dispersion of ZnO-NPs, mitigating particle aggregation. Remarkably, XPS analysis reveals a distinct shift in peak intensity, characterized by a reduction in pyrrolic-N and a corresponding increase in pyridinic-N. This conversion of pyrrolic-N to pyridinic-N due to incorporation of ZnO-NPs onto CNSn plays a crucial role in improving its bactericidal effect. The antibacterial assays against Gram negative <em>Escherichia coli</em>, Gram positive <em>Staphylococcus aureus</em> and methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) confirm the bactericidal activity of ZnO@CNSn. Additionally, the SEM micrographs show altered bacterial morphology on interaction with the nanocomposites, further validating the effective bactericidal properties. Moreover, ZnO@CNSn exhibits enhanced cytocompatibility compared to CNSn. These findings underscore the promising potential of the ZnO-decorated CNSn architecture as a robust platform for advanced antibacterial applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 22","pages":" 6519-6532"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00516g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating prevalence of drug-resistant pathogens poses a significant threat to global health, contributing to elevated mortality rates and inflated healthcare expenses. To combat antibacterial resistance, carbon-based nanocomposites incorporating metal oxides have emerged as a promising solution in the development of advanced antibacterial agents. In this quest, we propose a nascent strategy to synthesize zinc oxide-decorated carbon nanosheets (ZnO@CNSn) via a co-precipitation method. The crystalline ZnO nanoparticles (ZnO-NPs) are homogeneously dispersed throughout a framework of melamine-enriched carbon nanosheets (CNSn). The presence of pyrrolic-N and pyridinic-N functionalities in ZnO@CNSn enhances the charge transfer kinetics and creates nucleation sites for uniform dispersion of ZnO-NPs, mitigating particle aggregation. Remarkably, XPS analysis reveals a distinct shift in peak intensity, characterized by a reduction in pyrrolic-N and a corresponding increase in pyridinic-N. This conversion of pyrrolic-N to pyridinic-N due to incorporation of ZnO-NPs onto CNSn plays a crucial role in improving its bactericidal effect. The antibacterial assays against Gram negative Escherichia coli, Gram positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) confirm the bactericidal activity of ZnO@CNSn. Additionally, the SEM micrographs show altered bacterial morphology on interaction with the nanocomposites, further validating the effective bactericidal properties. Moreover, ZnO@CNSn exhibits enhanced cytocompatibility compared to CNSn. These findings underscore the promising potential of the ZnO-decorated CNSn architecture as a robust platform for advanced antibacterial applications.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices