Chun-Mei Qian, Liu Yang, Yi-Ying Wang, Zi-Liang Wang, Zi-Hang Xu, Mi-Die Xu, Xing Zhang, Xiao-Yu Wang
{"title":"Gambogic Acid Induces Ferroptosis via miR-1291/FOXA2 Axis in Gastric Cancer.","authors":"Chun-Mei Qian, Liu Yang, Yi-Ying Wang, Zi-Liang Wang, Zi-Hang Xu, Mi-Die Xu, Xing Zhang, Xiao-Yu Wang","doi":"10.1142/S0192415X25500363","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, posing a significant threat to human health. Recently, gambogic acid (GA) has garnered attention for its anticancer properties in GC. However, it remains unclear whether GA can regulate other forms of cell death beyond apoptosis. In this study, we found that GA inhibited proliferation and induced ferroptosis in GC cells. Western blot analysis was employed to assess ferroptosis and endoplasmic reticulum (ER) stress-related proteins, as well as forkhead box A2 (FOXA2) expression. Additionally, malondialdehyde (MDA) and glutathione (GSH) levels were measured following GA treatment, and quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate miR-1291 expression. Our findings revealed that GA treatment elevated reactive oxygen species (ROS) levels and promoted intracellular Fe[Formula: see text], MDA, and GSH accumulation. Furthermore, GA upregulated SLC7A11 and ferritin expression while suppressing glutathione peroxidase 4 (GPX4) in AGS and HGC27 cells, suggesting its role in ferroptosis induction. Notably, GA increased miR-1291 levels and downregulated FOXA2 expression. Subsequent analyses showed FOXA2 as a direct target of miR-1291. Functional experiments involving miR-1291 and FOXA2 knockdown or overexpression further suggested that the miR-1291/FOXA2 axis mediates ferroptosis. Finally, tumor xenograft models showed that GA effectively inhibited tumor growth by inducing ferroptosis. In conclusion, our study provides compelling evidence that GA induces ferroptosis in GC through the miR-1291/FOXA2 axis, highlighting its potential as a novel therapeutic strategy and preventive target for gastric cancer treatment.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":"53 3","pages":"951-971"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X25500363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, posing a significant threat to human health. Recently, gambogic acid (GA) has garnered attention for its anticancer properties in GC. However, it remains unclear whether GA can regulate other forms of cell death beyond apoptosis. In this study, we found that GA inhibited proliferation and induced ferroptosis in GC cells. Western blot analysis was employed to assess ferroptosis and endoplasmic reticulum (ER) stress-related proteins, as well as forkhead box A2 (FOXA2) expression. Additionally, malondialdehyde (MDA) and glutathione (GSH) levels were measured following GA treatment, and quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate miR-1291 expression. Our findings revealed that GA treatment elevated reactive oxygen species (ROS) levels and promoted intracellular Fe[Formula: see text], MDA, and GSH accumulation. Furthermore, GA upregulated SLC7A11 and ferritin expression while suppressing glutathione peroxidase 4 (GPX4) in AGS and HGC27 cells, suggesting its role in ferroptosis induction. Notably, GA increased miR-1291 levels and downregulated FOXA2 expression. Subsequent analyses showed FOXA2 as a direct target of miR-1291. Functional experiments involving miR-1291 and FOXA2 knockdown or overexpression further suggested that the miR-1291/FOXA2 axis mediates ferroptosis. Finally, tumor xenograft models showed that GA effectively inhibited tumor growth by inducing ferroptosis. In conclusion, our study provides compelling evidence that GA induces ferroptosis in GC through the miR-1291/FOXA2 axis, highlighting its potential as a novel therapeutic strategy and preventive target for gastric cancer treatment.