A Novel Approach to Sequential Organ Failure Assessment (SOFA) Using Near-Infrared Spectroscopy in Extracorporeal Membrane Oxygenation (ECMO) Patients.

Chia-Wei Sun, Chun-Yeh Wang, Yu-Han Zheng, Yi-Min Wang, Hsiao-Huang Chang
{"title":"A Novel Approach to Sequential Organ Failure Assessment (SOFA) Using Near-Infrared Spectroscopy in Extracorporeal Membrane Oxygenation (ECMO) Patients.","authors":"Chia-Wei Sun, Chun-Yeh Wang, Yu-Han Zheng, Yi-Min Wang, Hsiao-Huang Chang","doi":"10.1002/jbio.202500032","DOIUrl":null,"url":null,"abstract":"<p><p>Extracorporeal membrane oxygenation (ECMO) is a medical device that provides temporary external circulation and respiratory support during heart-lung procedures, substituting for heart and lung function to alleviate their burden and allow more time for treatment. This study employs the sequential organ failure assessment (SOFA) to evaluate the severity of illness in ECMO patients and utilizes noninvasive near-infrared spectroscopy (NIRS) to monitor lower limb microcirculation. By extracting and selecting features, blood oxygen information is input into machine learning models for classification and regression analysis. The results indicated that the classification accuracy for disease severity reached 90% for veno-venous (VV-ECMO) and veno-arterial (VA-ECMO) patients, demonstrating the efficacy of combining NIRS with machine learning in clinically distinguishing disease severity. Additionally, the regression analysis yielded excellent performance. These findings underscore the effectiveness of NIRS in assessing disease severity among ECMO patients, offering valuable clinical guidance for optimizing ECMO settings, adjusting cardiovascular medication dosages, and predicting patient prognosis.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500032"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extracorporeal membrane oxygenation (ECMO) is a medical device that provides temporary external circulation and respiratory support during heart-lung procedures, substituting for heart and lung function to alleviate their burden and allow more time for treatment. This study employs the sequential organ failure assessment (SOFA) to evaluate the severity of illness in ECMO patients and utilizes noninvasive near-infrared spectroscopy (NIRS) to monitor lower limb microcirculation. By extracting and selecting features, blood oxygen information is input into machine learning models for classification and regression analysis. The results indicated that the classification accuracy for disease severity reached 90% for veno-venous (VV-ECMO) and veno-arterial (VA-ECMO) patients, demonstrating the efficacy of combining NIRS with machine learning in clinically distinguishing disease severity. Additionally, the regression analysis yielded excellent performance. These findings underscore the effectiveness of NIRS in assessing disease severity among ECMO patients, offering valuable clinical guidance for optimizing ECMO settings, adjusting cardiovascular medication dosages, and predicting patient prognosis.

使用近红外光谱对体外膜氧合(ECMO)患者进行顺序器官衰竭评估(SOFA)的新方法。
体外膜氧合(Extracorporeal membrane oxygenation, ECMO)是一种医疗设备,在心肺手术过程中提供暂时的外循环和呼吸支持,取代心肺功能,减轻其负担,为治疗留出更多时间。本研究采用序贯器官衰竭评估(SOFA)来评估ECMO患者的病情严重程度,并利用无创近红外光谱(NIRS)监测下肢微循环。通过提取和选择特征,将血氧信息输入到机器学习模型中进行分类和回归分析。结果表明,静脉-静脉(VV-ECMO)和静脉-动脉(VA-ECMO)患者疾病严重程度的分类准确率达到90%,证明了NIRS与机器学习相结合在临床上区分疾病严重程度的有效性。此外,回归分析产生了良好的性能。这些发现强调了NIRS在评估ECMO患者疾病严重程度方面的有效性,为优化ECMO设置、调整心血管药物剂量和预测患者预后提供了有价值的临床指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信