Hanna L. Glandorf, Daniel J. Madigan, Owen Kavanagh, Sarah H. Mallinson-Howard
{"title":"Athlete burnout and biomarkers: An exploratory, longitudinal N-of-1 study","authors":"Hanna L. Glandorf, Daniel J. Madigan, Owen Kavanagh, Sarah H. Mallinson-Howard","doi":"10.1016/j.psychsport.2025.102870","DOIUrl":null,"url":null,"abstract":"<div><div>Burnout is an increasingly common problem among athletes. In addition to negatively affecting mental health, burnout may also be related to changes in physiological functioning. Research outside of sport suggests that the hypothalamus-pituitary-adrenal (HPA) axis, immune, anabolic, and cardiovascular systems, in particular, may be affected. However, few studies have explored the relationship between burnout and biomarkers of these systems in athletes. Consequently, the aim of the present multidisciplinary study was to explore the relationship between athlete burnout and acute and chronic biomarkers using a longitudinal <em>N-of-1</em> design. Following a pre-registered protocol with open data, code, and materials, in two athletes, we examined burnout and acute salivary biomarkers (cortisol, testosterone, dehydroepiandrosterone-sulphate [DHEA-S], secretory Immunoglobulin A [sIgA], and C-reactive protein) in 12 samples over six months. In another two athletes, we examined burnout and chronic biomarkers from hair and blood (hair cortisol, glycated haemoglobin [HbA1c], triglycerides, total cholesterol, high-density lipoprotein cholesterol, and DNA methylation in the BDNF, SLC6A4, and NR3C1 genes) in six samples over 12 months. Dynamic regression modelling showed that burnout symptoms predicted decreased testosterone and developed simultaneously with decreases in DHEA-S and sIgA. Visual analyses suggested that burnout symptoms also developed in conjunction with increases in HbA1c and SLC6A4 methylation and preceded increases in hair cortisol and BDNF methylation. Our findings provide a preliminary “physiological fingerprint” that could help explain athlete burnout development and consequences which can be used to guide future theory and research in this area.</div></div>","PeriodicalId":54536,"journal":{"name":"Psychology of Sport and Exercise","volume":"80 ","pages":"Article 102870"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychology of Sport and Exercise","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146902922500069X","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Burnout is an increasingly common problem among athletes. In addition to negatively affecting mental health, burnout may also be related to changes in physiological functioning. Research outside of sport suggests that the hypothalamus-pituitary-adrenal (HPA) axis, immune, anabolic, and cardiovascular systems, in particular, may be affected. However, few studies have explored the relationship between burnout and biomarkers of these systems in athletes. Consequently, the aim of the present multidisciplinary study was to explore the relationship between athlete burnout and acute and chronic biomarkers using a longitudinal N-of-1 design. Following a pre-registered protocol with open data, code, and materials, in two athletes, we examined burnout and acute salivary biomarkers (cortisol, testosterone, dehydroepiandrosterone-sulphate [DHEA-S], secretory Immunoglobulin A [sIgA], and C-reactive protein) in 12 samples over six months. In another two athletes, we examined burnout and chronic biomarkers from hair and blood (hair cortisol, glycated haemoglobin [HbA1c], triglycerides, total cholesterol, high-density lipoprotein cholesterol, and DNA methylation in the BDNF, SLC6A4, and NR3C1 genes) in six samples over 12 months. Dynamic regression modelling showed that burnout symptoms predicted decreased testosterone and developed simultaneously with decreases in DHEA-S and sIgA. Visual analyses suggested that burnout symptoms also developed in conjunction with increases in HbA1c and SLC6A4 methylation and preceded increases in hair cortisol and BDNF methylation. Our findings provide a preliminary “physiological fingerprint” that could help explain athlete burnout development and consequences which can be used to guide future theory and research in this area.
期刊介绍:
Psychology of Sport and Exercise is an international forum for scholarly reports in the psychology of sport and exercise, broadly defined. The journal is open to the use of diverse methodological approaches. Manuscripts that will be considered for publication will present results from high quality empirical research, systematic reviews, meta-analyses, commentaries concerning already published PSE papers or topics of general interest for PSE readers, protocol papers for trials, and reports of professional practice (which will need to demonstrate academic rigour and go beyond mere description). The CONSORT guidelines consort-statement need to be followed for protocol papers for trials; authors should present a flow diagramme and attach with their cover letter the CONSORT checklist. For meta-analysis, the PRISMA prisma-statement guidelines should be followed; authors should present a flow diagramme and attach with their cover letter the PRISMA checklist. For systematic reviews it is recommended that the PRISMA guidelines are followed, although it is not compulsory. Authors interested in submitting replications of published studies need to contact the Editors-in-Chief before they start their replication. We are not interested in manuscripts that aim to test the psychometric properties of an existing scale from English to another language, unless new validation methods are used which address previously unanswered research questions.