Machine Learning-Based Random Forest to Predict 3-Year Survival after Endovascular Aneurysm Repair.

Toshiya Nishibe, Tsuyoshi Iwasa, Seiji Matsuda, Masaki Kano, Shinobu Akiyama, Shoji Fukuda, Masayasu Nishibe
{"title":"Machine Learning-Based Random Forest to Predict 3-Year Survival after Endovascular Aneurysm Repair.","authors":"Toshiya Nishibe, Tsuyoshi Iwasa, Seiji Matsuda, Masaki Kano, Shinobu Akiyama, Shoji Fukuda, Masayasu Nishibe","doi":"10.5761/atcs.oa.25-00036","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Endovascular aneurysm repair (EVAR) is widely used to treat abdominal aortic aneurysms (AAAs), but mid-term survival remains a concern. This study aims to develop a machine learning-based random forest model to predict 3-year survival after EVAR.</p><p><strong>Methods: </strong>A random forest model was trained using data from 176 EVAR patients, of whom 169 patients were retained for analysis, incorporating 23 preoperative and perioperative variables. Model performance was evaluated using 5-fold cross-validation.</p><p><strong>Results: </strong>The model achieved an area under the receiver-operating characteristic curve (AUC) of 0.91, with an accuracy of 81.1%, a sensitivity of 81.6%, a specificity of 80.9%, and an F1 score of 0.66. Feature importance analysis identified poor nutritional status (geriatric nutritional risk index <101.4), compromised immunity (neutrophil-to-lymphocyte ratio >3.19), chronic kidney disease (CKD), octogenarian status, chronic obstructive pulmonary disease (COPD), small aneurysm size, and statin use as the top predictors of 3-year mortality. The average values of the AUC, accuracy, sensitivity, specificity, and F1 score across the 5-folds were 0.76 ± 0.10, 73.9 ± 5.8%, 60.4 ± 1.9%, 77.8 ± 0.7%, and 0.59 ± 0.17, indicating consistent performance across different data subsets.</p><p><strong>Conclusions: </strong>The random forest model effectively predicts 3-year survival after EVAR, indicating key factors such as poor nutritional status, compromised immunity, CKD, octogenarian status, COPD, small aneurysm size, and statin use.</p>","PeriodicalId":93877,"journal":{"name":"Annals of thoracic and cardiovascular surgery : official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12086006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of thoracic and cardiovascular surgery : official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5761/atcs.oa.25-00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Endovascular aneurysm repair (EVAR) is widely used to treat abdominal aortic aneurysms (AAAs), but mid-term survival remains a concern. This study aims to develop a machine learning-based random forest model to predict 3-year survival after EVAR.

Methods: A random forest model was trained using data from 176 EVAR patients, of whom 169 patients were retained for analysis, incorporating 23 preoperative and perioperative variables. Model performance was evaluated using 5-fold cross-validation.

Results: The model achieved an area under the receiver-operating characteristic curve (AUC) of 0.91, with an accuracy of 81.1%, a sensitivity of 81.6%, a specificity of 80.9%, and an F1 score of 0.66. Feature importance analysis identified poor nutritional status (geriatric nutritional risk index <101.4), compromised immunity (neutrophil-to-lymphocyte ratio >3.19), chronic kidney disease (CKD), octogenarian status, chronic obstructive pulmonary disease (COPD), small aneurysm size, and statin use as the top predictors of 3-year mortality. The average values of the AUC, accuracy, sensitivity, specificity, and F1 score across the 5-folds were 0.76 ± 0.10, 73.9 ± 5.8%, 60.4 ± 1.9%, 77.8 ± 0.7%, and 0.59 ± 0.17, indicating consistent performance across different data subsets.

Conclusions: The random forest model effectively predicts 3-year survival after EVAR, indicating key factors such as poor nutritional status, compromised immunity, CKD, octogenarian status, COPD, small aneurysm size, and statin use.

基于机器学习的随机森林预测血管内动脉瘤修复后3年生存率。
目的:血管内动脉瘤修复(EVAR)被广泛应用于腹主动脉瘤(AAAs)的治疗,但中期生存仍然是一个问题。本研究旨在开发一种基于机器学习的随机森林模型来预测EVAR后的3年生存率。方法:使用176例EVAR患者的数据训练随机森林模型,其中保留169例患者进行分析,包括23个术前和围手术期变量。采用5倍交叉验证评估模型性能。结果:该模型的受者工作特征曲线下面积(AUC)为0.91,准确率为81.1%,灵敏度为81.6%,特异性为80.9%,F1评分为0.66。特征重要性分析发现营养状况不良(老年营养风险指数3.19)、慢性肾脏疾病(CKD)、八旬状态、慢性阻塞性肺疾病(COPD)、小动脉瘤和他汀类药物使用是3年死亡率的主要预测因素。5组的AUC、准确度、灵敏度、特异性和F1评分的平均值分别为0.76±0.10、73.9±5.8%、60.4±1.9%、77.8±0.7%和0.59±0.17,表明在不同的数据子集中表现一致。结论:随机森林模型可有效预测EVAR后3年生存率,提示营养状况不良、免疫力低下、CKD、老年状态、COPD、小动脉瘤大小和他汀类药物使用等关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信