Chandra Sekhar Kathera, Zehra Cobandede, Kaylea Titus, Ibrahim Mohammad, Mustafa Culha
{"title":"Nanomaterial-based scaffolds for bone regeneration with piezoelectric properties.","authors":"Chandra Sekhar Kathera, Zehra Cobandede, Kaylea Titus, Ibrahim Mohammad, Mustafa Culha","doi":"10.1080/17435889.2025.2504320","DOIUrl":null,"url":null,"abstract":"<p><p>For proper cellular growth, to prepare tissue scaffold mimicking the tissue properties is a significant challenge. Bone is a vital organ supporting the whole human body for its function. The efficiencies in its structure for a variety of reasons should properly be remedied. Bone tissue engineering (BTE) is an emerging field addressing to develop or repair bone tissue for its proper function. The bone is naturally a piezoelectric material and generates electrical stimuli because of mechanical stress. Thus, the use of piezoelectric materials to build bone tissue is of great interest in BTE. Both piezoelectric polymers and nanomaterials (NMs) are investigated for this goal. In this review, we give an overview of the recent advances in piezoelectric NMs to construct piezoelectric scaffolds in BTE.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1461-1477"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2504320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For proper cellular growth, to prepare tissue scaffold mimicking the tissue properties is a significant challenge. Bone is a vital organ supporting the whole human body for its function. The efficiencies in its structure for a variety of reasons should properly be remedied. Bone tissue engineering (BTE) is an emerging field addressing to develop or repair bone tissue for its proper function. The bone is naturally a piezoelectric material and generates electrical stimuli because of mechanical stress. Thus, the use of piezoelectric materials to build bone tissue is of great interest in BTE. Both piezoelectric polymers and nanomaterials (NMs) are investigated for this goal. In this review, we give an overview of the recent advances in piezoelectric NMs to construct piezoelectric scaffolds in BTE.