Disparate mechanisms counteract extraneous CRISPR RNA production in type II-C CRISPR-Cas systems.

microLife Pub Date : 2025-05-14 eCollection Date: 2025-01-01 DOI:10.1093/femsml/uqaf007
Maximilian Feussner, Angela Migur, Alexander Mitrofanov, Omer S Alkhnbashi, Rolf Backofen, Chase L Beisel, Zasha Weinberg
{"title":"Disparate mechanisms counteract extraneous CRISPR RNA production in type II-C CRISPR-Cas systems.","authors":"Maximilian Feussner, Angela Migur, Alexander Mitrofanov, Omer S Alkhnbashi, Rolf Backofen, Chase L Beisel, Zasha Weinberg","doi":"10.1093/femsml/uqaf007","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas adaptive immune systems in bacteria and archaea enable precise targeting and elimination of invading genetic elements. An inherent feature of these systems is the 'extraneous' CRISPR RNA (ecrRNA), which is produced via the extra repeat in a CRISPR array lacking a corresponding spacer. As ecrRNAs would interact with the Cas machinery yet not direct acquired immunity, they pose a potential barrier to defence. Type II-A CRISPR-Cas systems resolve this barrier through the leader sequence upstream of a CRISPR array, which forms a hairpin structure with the extra repeat that inhibits ecrRNA production. However, the fate of ecrRNAs in other CRISPR types and subtypes remains to be explored. Here, we report that II-C systems likely employ disparate strategies to resolve the ecrRNA due to their distinct configuration in comparison to II-A. Applying bioinformatics analyses to over 650 II-C systems followed by experimental validation, we identified three strategies applicable to these systems: formation of an upstream Rho-independent terminator, formation of a hairpin that sequesters the ecrRNA guide, and mutations in the repeat expected to disrupt ecrRNA formation. These findings expand the list of mechanisms in CRISPR-Cas systems that could resolve the ecrRNA to optimize immune response.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"6 ","pages":"uqaf007"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqaf007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas adaptive immune systems in bacteria and archaea enable precise targeting and elimination of invading genetic elements. An inherent feature of these systems is the 'extraneous' CRISPR RNA (ecrRNA), which is produced via the extra repeat in a CRISPR array lacking a corresponding spacer. As ecrRNAs would interact with the Cas machinery yet not direct acquired immunity, they pose a potential barrier to defence. Type II-A CRISPR-Cas systems resolve this barrier through the leader sequence upstream of a CRISPR array, which forms a hairpin structure with the extra repeat that inhibits ecrRNA production. However, the fate of ecrRNAs in other CRISPR types and subtypes remains to be explored. Here, we report that II-C systems likely employ disparate strategies to resolve the ecrRNA due to their distinct configuration in comparison to II-A. Applying bioinformatics analyses to over 650 II-C systems followed by experimental validation, we identified three strategies applicable to these systems: formation of an upstream Rho-independent terminator, formation of a hairpin that sequesters the ecrRNA guide, and mutations in the repeat expected to disrupt ecrRNA formation. These findings expand the list of mechanisms in CRISPR-Cas systems that could resolve the ecrRNA to optimize immune response.

在II-C型CRISPR- cas系统中,不同的机制抵消了外来CRISPR RNA的产生。
细菌和古细菌中的CRISPR-Cas适应性免疫系统能够精确靶向和消除入侵的遗传元素。这些系统的一个固有特征是“外源性”CRISPR RNA (ecrRNA),它是通过缺乏相应间隔的CRISPR阵列中的额外重复产生的。由于ecrRNAs会与Cas机制相互作用,但不会直接获得性免疫,因此它们构成了防御的潜在障碍。II-A型CRISPR- cas系统通过CRISPR阵列上游的先导序列解决了这一障碍,该序列与抑制ecrRNA产生的额外重复序列形成发夹结构。然而,ecrnas在其他CRISPR类型和亚型中的命运仍有待探索。在这里,我们报告说II-C系统可能采用不同的策略来解决ecrRNA,因为它们与II-A相比具有不同的配置。通过对650多个II-C系统进行生物信息学分析并进行实验验证,我们确定了适用于这些系统的三种策略:上游rho独立终止子的形成,分离ecrRNA向导的发夹的形成,以及预计会破坏ecrRNA形成的重复序列中的突变。这些发现扩大了CRISPR-Cas系统中可以解析ecrRNA以优化免疫反应的机制列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信