The quest for blood pressure markers in photoplethysmography and its applications in digital health.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-04-30 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1518322
Josep Sola, Andreu Arderiu, Tiago P Almeida, Sibylle Fallet, Sasan Yazdani, Serj Haddad, David Perruchoud, Olivier Grossenbacher, Jay Shah
{"title":"The quest for blood pressure markers in photoplethysmography and its applications in digital health.","authors":"Josep Sola, Andreu Arderiu, Tiago P Almeida, Sibylle Fallet, Sasan Yazdani, Serj Haddad, David Perruchoud, Olivier Grossenbacher, Jay Shah","doi":"10.3389/fdgth.2025.1518322","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Photoplethysmography (PPG) sensors, capturing optical signals from arterial pulses, are debated for their potential in blood pressure (BP) measurement. This study employed the largest dataset to date of paired PPG and cuff BP readings to explore PPG signals for BP estimation.</p><p><strong>Methods: </strong>32,152 European residents (age 55.9% ± 11.8, 24% female, BMI 27.7 ± 4.6) voluntarily acquired and used a cuffless BP monitor (Aktiia SA, Switzerland) between March/2,021-March/2023. Systolic and diastolic BP (SBP, DBP) from an upper arm oscillometric cuff were collected simultaneously with wrist PPG (668,080 paired measurements). Six different machine learning models were developed to predict BP using cuff BP readings as reference (75%|15%|15% training|validation|testing): four baseline models [heart rate (HR), Age, Demography (DEM: Age + Gender + BMI), DEM + HR], and two models relying on the analysis of the PPG waveforms (PPG, PPG + DEM). Performance of each model was evaluated on the 4,823 subjects from the testing set using as metrics the Pearson's correlation (r) when comparing the estimated and the reference BP values, and the area under the receiver operating characteristic (AUROC) curves, and true positive and true negative rates (TPR, TNR) for the detection of high BP (reference SBP ≥ 140 or DBP ≥ 90 mmHg, applying a ± 8 mmHg exclusion zone to account for cuff measurement uncertainty).</p><p><strong>Results: </strong>Baseline models showed low correlation with cuff data and poor high BP detection (<i>r</i> < 0.35; AUROC < 0.65, TPR < 0.65, TNR < 0.58). PPG-based models excelled in correlating with cuff BP (SBP: <i>r</i> = 0.53 for PPG, <i>r</i> = 0.63 for PPG + DEM; DBP: <i>r</i> = 0.58 for PPG, <i>r</i> = 0.67 for PPG + DEM) and high BP detection (SBP: AUROC = 0.84, TPR = TNR = 0.75; DBP: AUROC = 0.89, TPR = TNR = 0.81 for PPG; SBP: AUROC = 0.89, TPR = TNR = 0.80; DBP: AUROC = 0.93, TPR = TNR = 0.86 for PPG + DEM).</p><p><strong>Discussion: </strong>This study demonstrated that PPG signals contain reliable markers of BP, and that BP values can be estimated using only markers found within PPG's optical pulsatility signals, outperforming models based solely on demographic data. These findings hold the potential to radically transform hypertension screening and global healthcare delivery, paving the way for innovative approaches in patient diagnosis, monitoring and treatment methodologies.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1518322"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1518322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Photoplethysmography (PPG) sensors, capturing optical signals from arterial pulses, are debated for their potential in blood pressure (BP) measurement. This study employed the largest dataset to date of paired PPG and cuff BP readings to explore PPG signals for BP estimation.

Methods: 32,152 European residents (age 55.9% ± 11.8, 24% female, BMI 27.7 ± 4.6) voluntarily acquired and used a cuffless BP monitor (Aktiia SA, Switzerland) between March/2,021-March/2023. Systolic and diastolic BP (SBP, DBP) from an upper arm oscillometric cuff were collected simultaneously with wrist PPG (668,080 paired measurements). Six different machine learning models were developed to predict BP using cuff BP readings as reference (75%|15%|15% training|validation|testing): four baseline models [heart rate (HR), Age, Demography (DEM: Age + Gender + BMI), DEM + HR], and two models relying on the analysis of the PPG waveforms (PPG, PPG + DEM). Performance of each model was evaluated on the 4,823 subjects from the testing set using as metrics the Pearson's correlation (r) when comparing the estimated and the reference BP values, and the area under the receiver operating characteristic (AUROC) curves, and true positive and true negative rates (TPR, TNR) for the detection of high BP (reference SBP ≥ 140 or DBP ≥ 90 mmHg, applying a ± 8 mmHg exclusion zone to account for cuff measurement uncertainty).

Results: Baseline models showed low correlation with cuff data and poor high BP detection (r < 0.35; AUROC < 0.65, TPR < 0.65, TNR < 0.58). PPG-based models excelled in correlating with cuff BP (SBP: r = 0.53 for PPG, r = 0.63 for PPG + DEM; DBP: r = 0.58 for PPG, r = 0.67 for PPG + DEM) and high BP detection (SBP: AUROC = 0.84, TPR = TNR = 0.75; DBP: AUROC = 0.89, TPR = TNR = 0.81 for PPG; SBP: AUROC = 0.89, TPR = TNR = 0.80; DBP: AUROC = 0.93, TPR = TNR = 0.86 for PPG + DEM).

Discussion: This study demonstrated that PPG signals contain reliable markers of BP, and that BP values can be estimated using only markers found within PPG's optical pulsatility signals, outperforming models based solely on demographic data. These findings hold the potential to radically transform hypertension screening and global healthcare delivery, paving the way for innovative approaches in patient diagnosis, monitoring and treatment methodologies.

光容积脉搏波测量中血压标记物的探索及其在数字健康中的应用。
Photoplethysmography (PPG)传感器从动脉脉冲中捕获光信号,其在血压(BP)测量中的潜力一直存在争议。本研究使用了迄今为止最大的配对PPG和袖带血压读数数据集来探索用于血压估计的PPG信号。方法:32152名欧洲居民(年龄55.9%±11.8,24%女性,BMI 27.7±4.6)于2021年3月至2023年3月自愿获得并使用无袖扣血压监测仪(Aktiia SA,瑞士)。同时收集上臂振荡袖带的收缩压和舒张压(SBP, DBP)和手腕PPG(668,080对测量)。研究人员开发了六种不同的机器学习模型,以袖带血压读数为参考(75%|15%|15%训练|验证|测试)来预测血压:四种基线模型[心率(HR),年龄,人口统计学(DEM:年龄+性别+ BMI), DEM + HR],以及两种依赖于PPG波形分析的模型(PPG, PPG + DEM)。每个模型的性能在测试集中的4,823名受试者中进行评估,使用比较估计值和参考血压时的Pearson相关系数(r)、受试者工作特征曲线下的面积(AUROC)以及检测高血压(参考收缩压≥140或舒张压≥90 mmHg,应用±8 mmHg排除区来考虑袖带测量不确定度)的真阳性和真阴性率(TPR, TNR)作为度量标准。结果:基线模型显示与袖带数据和较差的高血压检测相关性较低(PPG r = 0.53, PPG + DEM r = 0.63;DBP: r = 0.58 PPG, r = 0.67 PPG + DEM)和高BP检测(SBP: AUROC = 0.84, TPR = TNR = 0.75;DBP: AUROC = 0.89, TPR = TNR = 0.81;Sbp: auroc = 0.89, tpr = tnr = 0.80;菲律宾:AUROC = 0.93, TPR = TNR = 0.86分+民主党)。讨论:本研究表明PPG信号包含可靠的BP标记,并且仅使用PPG光脉冲信号中发现的标记就可以估计BP值,优于仅基于人口统计数据的模型。这些发现有可能从根本上改变高血压筛查和全球医疗保健服务,为患者诊断、监测和治疗方法的创新方法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信