Permutation-based global rank test with adaptive weights for multiple primary endpoints.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Satoshi Yoshida, Yusuke Yamaguchi, Kazushi Maruo, Masahiko Gosho
{"title":"Permutation-based global rank test with adaptive weights for multiple primary endpoints.","authors":"Satoshi Yoshida, Yusuke Yamaguchi, Kazushi Maruo, Masahiko Gosho","doi":"10.1177/09622802251334886","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple efficacy endpoints are investigated in clinical trials, and selecting the appropriate primary endpoints is key to the study's success. The global test is an analysis approach that can handle multiple endpoints without multiplicity adjustment. This test, which aggregates the statistics from multiple primary endpoints into a single statistic using weights for the statistical comparison, has been gaining increasing attention. A key consideration in the global test is determination of the weights. In this study, we propose a novel global rank test in which the weights for each endpoint are estimated based on the current study data to maximize the test statistic, and the permutation test is applied to control the type I error rate. Simulation studies conducted to compare the proposed test with other global tests show that the proposed test can control the type I error rate at the nominal level, regardless of the number of primary endpoints and correlations between endpoints. Additionally, the proposed test offers higher statistical powers when the efficacy is considerably different between endpoints or when endpoints are moderately correlated, such as when the correlation coefficient is greater than or equal to 0.5.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251334886"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251334886","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple efficacy endpoints are investigated in clinical trials, and selecting the appropriate primary endpoints is key to the study's success. The global test is an analysis approach that can handle multiple endpoints without multiplicity adjustment. This test, which aggregates the statistics from multiple primary endpoints into a single statistic using weights for the statistical comparison, has been gaining increasing attention. A key consideration in the global test is determination of the weights. In this study, we propose a novel global rank test in which the weights for each endpoint are estimated based on the current study data to maximize the test statistic, and the permutation test is applied to control the type I error rate. Simulation studies conducted to compare the proposed test with other global tests show that the proposed test can control the type I error rate at the nominal level, regardless of the number of primary endpoints and correlations between endpoints. Additionally, the proposed test offers higher statistical powers when the efficacy is considerably different between endpoints or when endpoints are moderately correlated, such as when the correlation coefficient is greater than or equal to 0.5.

基于置换的多主端点自适应权重全局秩检验。
临床试验研究了多个疗效终点,选择合适的主要终点是研究成功的关键。全局测试是一种可以处理多个端点而不需要进行多重性调整的分析方法。该测试使用权重将来自多个主要端点的统计信息聚合为一个统计信息,以进行统计比较,该测试已获得越来越多的关注。全局测试中的一个关键考虑因素是权重的确定。在本研究中,我们提出了一种新的全局秩检验方法,该方法基于当前研究数据估计每个端点的权重以最大化检验统计量,并应用置换检验来控制I型错误率。将提议的测试与其他全局测试进行比较的模拟研究表明,无论主要端点的数量和端点之间的相关性如何,提议的测试都可以将第一类错误率控制在名义水平上。此外,当终点之间的疗效差异很大或当终点适度相关时,例如相关系数大于或等于0.5时,建议的检验提供更高的统计能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信