New Insights into Alleviation Mechanism of Boron on H + Toxicity in Poncirus Trifoliate: Evidence from the Stabled Intracellular pH to the Repaired Plasma Membrane.
Jin Cheng, Muhammad Riaz, Saba Babar, Yu Liu, Siyun Xiao, Cuncang Jiang
{"title":"New Insights into Alleviation Mechanism of Boron on H + Toxicity in Poncirus Trifoliate: Evidence from the Stabled Intracellular pH to the Repaired Plasma Membrane.","authors":"Jin Cheng, Muhammad Riaz, Saba Babar, Yu Liu, Siyun Xiao, Cuncang Jiang","doi":"10.1093/treephys/tpaf059","DOIUrl":null,"url":null,"abstract":"<p><p>The inappropriate fertilization and poor management practices in citrus orchards can cause soil acidification, which may result in potential proton (H+) toxicity to citrus roots. It has been reported that boron (B) can mediate H+ detoxification in citrus; however, the mechanisms remain limited. Herein, a hydroponic experiment was employed to unravel the alleviation mechanism of B on H+ toxicity at pH 4 in trifoliate (Poncirus trifoliate (L.) Raf.) seedlings. H+ toxicity reduced cytoplasmic pH from 7.2 (control) to 6.9 and vacuolar pH from 5.6 (control) to 5.4. This severely damaged the plasma membrane (PM) and inhibited root activity by 35%. However, B supplementation restored cytoplasmic pH to 7.1 and vacuolar pH to 5.6, enhancing root activity by 52% and reducing membrane permeability (relative conductivity decreased by 28%). Mechanistically, B upregulated P-type ATPase (P-ATP) activity by 14%, conversely, suppressed V-type ATPase (V-ATP) hyperactivity by 9% to stabilize vacuolar pH. Furthermore, B restored PM integrity by increasing phospholipid (40%), glycolipid (50%), and sulfhydryl group (28%) content, critical for membrane structure and function. It is concluded that B can alleviate root growth inhibition induced by H+ toxicity via increasing the content of key components of PM, which not only repairs the damaged PM but also maintain cellular pH homeostasis through enzyme regulation. The improvement of citrus growth correspondingly safeguards the production capacity.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf059","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The inappropriate fertilization and poor management practices in citrus orchards can cause soil acidification, which may result in potential proton (H+) toxicity to citrus roots. It has been reported that boron (B) can mediate H+ detoxification in citrus; however, the mechanisms remain limited. Herein, a hydroponic experiment was employed to unravel the alleviation mechanism of B on H+ toxicity at pH 4 in trifoliate (Poncirus trifoliate (L.) Raf.) seedlings. H+ toxicity reduced cytoplasmic pH from 7.2 (control) to 6.9 and vacuolar pH from 5.6 (control) to 5.4. This severely damaged the plasma membrane (PM) and inhibited root activity by 35%. However, B supplementation restored cytoplasmic pH to 7.1 and vacuolar pH to 5.6, enhancing root activity by 52% and reducing membrane permeability (relative conductivity decreased by 28%). Mechanistically, B upregulated P-type ATPase (P-ATP) activity by 14%, conversely, suppressed V-type ATPase (V-ATP) hyperactivity by 9% to stabilize vacuolar pH. Furthermore, B restored PM integrity by increasing phospholipid (40%), glycolipid (50%), and sulfhydryl group (28%) content, critical for membrane structure and function. It is concluded that B can alleviate root growth inhibition induced by H+ toxicity via increasing the content of key components of PM, which not only repairs the damaged PM but also maintain cellular pH homeostasis through enzyme regulation. The improvement of citrus growth correspondingly safeguards the production capacity.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.