A family of Bayesian prognostic and predictive covariate-adjusted response-adaptive randomization designs.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Xinyi Pei, Yujie Zhao, Jun Yu, Li Wang, Hongjian Zhu
{"title":"A family of Bayesian prognostic and predictive covariate-adjusted response-adaptive randomization designs.","authors":"Xinyi Pei, Yujie Zhao, Jun Yu, Li Wang, Hongjian Zhu","doi":"10.1177/09622802251335150","DOIUrl":null,"url":null,"abstract":"<p><p>The prudent use of covariates to enhance the efficiency and ethics of clinical trials has garnered significant attention, particularly following the FDA's 2023 guidance on adjusting for covariates. This article introduces a Bayesian covariate-adjusted response-adaptive design aimed at distinguishing between prognostic and predictive covariates during randomization and analysis. The proposed design allocates more patients to the superior treatment based on predictive covariates while maintaining balance across prognostic covariate levels, without sacrificing the power to detect treatment effects. Predictive covariates, which identify patients more likely to benefit from a treatment, and prognostic covariates, which predict overall clinical outcomes, are crucial for personalized medicine and ethical rigor in clinical trials. The Bayesian covariate-adjusted response-adaptive design leverages these covariates to enhance precision and ensure balanced comparison groups, addressing patient heterogeneity and improving treatment efficacy. Our approach builds on the foundation of response-adaptive randomization designs, incorporating Bayesian methodologies to manage the complexities of adaptive designs and control the Type I error rate. Comprehensive numerical studies demonstrate the advantages of our design in achieving ethical, efficient, and balancing goals.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251335150"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251335150","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The prudent use of covariates to enhance the efficiency and ethics of clinical trials has garnered significant attention, particularly following the FDA's 2023 guidance on adjusting for covariates. This article introduces a Bayesian covariate-adjusted response-adaptive design aimed at distinguishing between prognostic and predictive covariates during randomization and analysis. The proposed design allocates more patients to the superior treatment based on predictive covariates while maintaining balance across prognostic covariate levels, without sacrificing the power to detect treatment effects. Predictive covariates, which identify patients more likely to benefit from a treatment, and prognostic covariates, which predict overall clinical outcomes, are crucial for personalized medicine and ethical rigor in clinical trials. The Bayesian covariate-adjusted response-adaptive design leverages these covariates to enhance precision and ensure balanced comparison groups, addressing patient heterogeneity and improving treatment efficacy. Our approach builds on the foundation of response-adaptive randomization designs, incorporating Bayesian methodologies to manage the complexities of adaptive designs and control the Type I error rate. Comprehensive numerical studies demonstrate the advantages of our design in achieving ethical, efficient, and balancing goals.

一系列贝叶斯预测和预测协变量调整反应-自适应随机化设计。
谨慎使用协变量以提高临床试验的效率和伦理性已经引起了极大的关注,特别是在FDA 2023年关于调整协变量的指导意见之后。本文介绍了一种贝叶斯协变量调整响应自适应设计,旨在在随机化和分析过程中区分预测协变量和预测协变量。该设计基于预测协变量将更多患者分配到更好的治疗方案,同时保持预后协变量水平之间的平衡,而不牺牲检测治疗效果的能力。预测协变量(确定更有可能从治疗中受益的患者)和预后协变量(预测总体临床结果)对于个性化医疗和临床试验中的伦理严谨性至关重要。贝叶斯协变量调整反应自适应设计利用这些协变量来提高精度,确保对照组平衡,解决患者异质性,提高治疗效果。我们的方法建立在响应-自适应随机化设计的基础上,结合贝叶斯方法来管理自适应设计的复杂性并控制I型错误率。全面的数值研究证明了我们的设计在实现道德、效率和平衡目标方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信