A decade of vertebrate palaeontology research: global taxa distribution, gender dynamics and evolving methodologies.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-05-14 eCollection Date: 2025-05-01 DOI:10.1098/rsos.250263
Haohan Wang, Juliana Sterli, Vincent Dupret, Henning Blom, Annalisa Berta, Susan Turner, Daoming Han, Luyan Xu, Zhaohui Pan
{"title":"A decade of vertebrate palaeontology research: global taxa distribution, gender dynamics and evolving methodologies.","authors":"Haohan Wang, Juliana Sterli, Vincent Dupret, Henning Blom, Annalisa Berta, Susan Turner, Daoming Han, Luyan Xu, Zhaohui Pan","doi":"10.1098/rsos.250263","DOIUrl":null,"url":null,"abstract":"<p><p>Using 12 104 publications from 2014 to 2023 in the DeepBone database, this study employs bibliometric methods, including full-text latent Dirichlet allocation (LDA) modelling, co-occurrence network analysis and geographic mapping with ArcGIS, to examine three key aspects of vertebrate palaeontology development: geographic distribution of newly established taxa, gender demographics among researchers and research trends. Gender data were analysed using automated tools with manual verification to ensure accuracy, while methodological evolution was investigated through systematic text mining and classification. Among 8336 newly established taxa, mammals (34.72%) and fishes (29.76%) dominate, followed by reptiles (25.34%), birds (7.39%) and amphibians (2.80%). Geographic analysis reveals significant regional disparities, with the USA (13.50%) and China (13.32%) contributing the most, while Africa and Oceania remain under-represented (less than 10%). Gender analysis indicates a gradual increase in female representation from 22.78 to 27.20% over the decade, highlighting the imperative to address gender disparities in vertebrate palaeontology, thereby advancing equity in alignment with UNESCO Sustainable Development Goal 5. LDA topic modelling identifies 15 distinct research topics, encompassing evolutionary biology, cranial and skeletal morphology, dinosaur-bird evolution and human evolution, while co-occurrence analysis highlights the evolution of research methodologies, revealing strong interconnections between phylogenetic analysis (15%), traditional morphological analysis (12%) and high-resolution imaging techniques (9%).</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 5","pages":"250263"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250263","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Using 12 104 publications from 2014 to 2023 in the DeepBone database, this study employs bibliometric methods, including full-text latent Dirichlet allocation (LDA) modelling, co-occurrence network analysis and geographic mapping with ArcGIS, to examine three key aspects of vertebrate palaeontology development: geographic distribution of newly established taxa, gender demographics among researchers and research trends. Gender data were analysed using automated tools with manual verification to ensure accuracy, while methodological evolution was investigated through systematic text mining and classification. Among 8336 newly established taxa, mammals (34.72%) and fishes (29.76%) dominate, followed by reptiles (25.34%), birds (7.39%) and amphibians (2.80%). Geographic analysis reveals significant regional disparities, with the USA (13.50%) and China (13.32%) contributing the most, while Africa and Oceania remain under-represented (less than 10%). Gender analysis indicates a gradual increase in female representation from 22.78 to 27.20% over the decade, highlighting the imperative to address gender disparities in vertebrate palaeontology, thereby advancing equity in alignment with UNESCO Sustainable Development Goal 5. LDA topic modelling identifies 15 distinct research topics, encompassing evolutionary biology, cranial and skeletal morphology, dinosaur-bird evolution and human evolution, while co-occurrence analysis highlights the evolution of research methodologies, revealing strong interconnections between phylogenetic analysis (15%), traditional morphological analysis (12%) and high-resolution imaging techniques (9%).

脊椎动物古生物学研究十年:全球分类群分布、性别动态和进化方法。
本研究利用DeepBone数据库2014 - 2023年12 104篇论文,采用文献计量学方法,包括全文潜狄利克雷分配(LDA)模型、共现网络分析和ArcGIS地理制图,考察了脊椎动物古生物学发展的三个关键方面:新建立分类群的地理分布、研究者性别人口统计学和研究趋势。性别数据使用自动化工具进行分析,并进行人工验证以确保准确性,同时通过系统的文本挖掘和分类调查方法的演变。在新建立的8336个分类群中,哺乳类占34.72%,鱼类占29.76%,其次是爬行类(25.34%)、鸟类(7.39%)和两栖类(2.80%)。地理分析显示了显著的地区差异,美国(13.50%)和中国(13.32%)贡献最多,而非洲和大洋洲的代表性仍然不足(不到10%)。性别分析表明,在过去十年中,女性比例从22.78%逐渐增加到27.20%,这凸显了解决脊椎动物古生物学中的性别差异的必要性,从而根据教科文组织可持续发展目标5促进公平。LDA主题建模确定了15个不同的研究主题,包括进化生物学、颅骨和骨骼形态学、恐龙鸟类进化和人类进化,而共现分析强调了研究方法的进化,揭示了系统发育分析(15%)、传统形态学分析(12%)和高分辨率成像技术(9%)之间的紧密联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信