Christian Ramirez, Elena Perenthaler, Fabio Lauria, Toma Tebaldi, Gabriella Viero
{"title":"Computational limitations and future needs to unravel the full potential of 2'-O-methylation and C/D box snoRNAs.","authors":"Christian Ramirez, Elena Perenthaler, Fabio Lauria, Toma Tebaldi, Gabriella Viero","doi":"10.1080/15476286.2025.2506712","DOIUrl":null,"url":null,"abstract":"<p><p>This review evaluates the current state of C/D snoRNA databases and prediction tools in relation to 2'-O-methylation (2'-O-Me). It highlights the limitations of existing resources in accurately annotating and predicting guide snoRNAs, particularly for newly identified 2'-O-Me sites. We emphasize the need for advanced computational approaches specifically tailored to 2'-O-Me to enable the discovery and functional analysis of snoRNAs. Given the growing importance of 2'-O-Me in areas such as cancer epitranscriptomics, ribosome biogenesis, and heterogeneity, existing tools remain inadequate. As 2'-O-Me gains recognition as a potential biomarker and therapeutic target, more sophisticated methods are urgently needed to improve snoRNA annotation and prediction, facilitating biomedical advancements.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":" ","pages":"1-11"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2506712","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This review evaluates the current state of C/D snoRNA databases and prediction tools in relation to 2'-O-methylation (2'-O-Me). It highlights the limitations of existing resources in accurately annotating and predicting guide snoRNAs, particularly for newly identified 2'-O-Me sites. We emphasize the need for advanced computational approaches specifically tailored to 2'-O-Me to enable the discovery and functional analysis of snoRNAs. Given the growing importance of 2'-O-Me in areas such as cancer epitranscriptomics, ribosome biogenesis, and heterogeneity, existing tools remain inadequate. As 2'-O-Me gains recognition as a potential biomarker and therapeutic target, more sophisticated methods are urgently needed to improve snoRNA annotation and prediction, facilitating biomedical advancements.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy