The double-banded false coralsnake Erythrolamprus bizona (Dipsadidae, Xenodontinae, Xenodontini) has a metalloproteinase-rich venom with proteolytic activity towards azocasein and α-fibrinogen
Kristian A. Torres-Bonilla , Juan D. Bayona-Serrano , Paula A. Sáenz-Suarez , Luis M. Muñoz-Gómez , Manuel H. Bernal-Bautista , Stephen Hyslop
{"title":"The double-banded false coralsnake Erythrolamprus bizona (Dipsadidae, Xenodontinae, Xenodontini) has a metalloproteinase-rich venom with proteolytic activity towards azocasein and α-fibrinogen","authors":"Kristian A. Torres-Bonilla , Juan D. Bayona-Serrano , Paula A. Sáenz-Suarez , Luis M. Muñoz-Gómez , Manuel H. Bernal-Bautista , Stephen Hyslop","doi":"10.1016/j.toxicon.2025.108407","DOIUrl":null,"url":null,"abstract":"<div><div>The venom of the double-banded false coralsnake, <em>Erythrolamprus bizona</em>, is proteolytic and attenuates neuromuscular contractile activity <em>in vitro</em>. Here, we examined the Duvernoy's venom gland histology and general composition of <em>E. bizona</em> venom using a combination of chromatographic, electrophoretic, enzymatic and proteomic analyses. Histologically, the venom gland consisted of serous epithelium-lined secretory tubules and a supralabial gland that stained positively for mucopolysaccharide. SDS-PAGE showed that the venom had a simple composition, with proteins in the range of 15–60 kDa. This simple composition was confirmed by RP-HPLC that revealed 15 main protein peaks. The venom (1–10 μg) was highly proteolytic towards azocasein, but was devoid of esterase, phospholipase (PLA<sub>2</sub>), and L-amino acid oxidase activities. The venom also degraded casein and gelatin in zymographic assays, with activity towards gelatin being particularly potent and detected over the range of 18.7 ng–30 μg of venom; gelatinolytic activity was also detected in four of the RP-HPLC peaks. The venom (10 μg) selectively degraded the α-chain of fibrinogen. All proteolytic activity was inhibited by EDTA (metalloproteinase inhibitor) but not by AEBSF (serine proteinase inhibitor). SDS-PAGE followed by in-gel digestion of the main electrophoretic bands coupled with LC-MS/MS analysis revealed the presence of five toxin families: C-type lectin-like proteins (CTL), cysteine-rich secretory proteins (CRiSP), phospholipase B (PLB), snake venom matrix metalloproteinases (svMMP), and snake venom metalloproteinases (SVMP). These findings extend our knowledge of the toxinology of <em>E. bizona</em> and suggest that the local manifestations (pain, edema, erythema, and ecchymosis) seen in human envenomation by this species are probably mediated by venom metalloproteinases.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"263 ","pages":"Article 108407"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010125001813","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The venom of the double-banded false coralsnake, Erythrolamprus bizona, is proteolytic and attenuates neuromuscular contractile activity in vitro. Here, we examined the Duvernoy's venom gland histology and general composition of E. bizona venom using a combination of chromatographic, electrophoretic, enzymatic and proteomic analyses. Histologically, the venom gland consisted of serous epithelium-lined secretory tubules and a supralabial gland that stained positively for mucopolysaccharide. SDS-PAGE showed that the venom had a simple composition, with proteins in the range of 15–60 kDa. This simple composition was confirmed by RP-HPLC that revealed 15 main protein peaks. The venom (1–10 μg) was highly proteolytic towards azocasein, but was devoid of esterase, phospholipase (PLA2), and L-amino acid oxidase activities. The venom also degraded casein and gelatin in zymographic assays, with activity towards gelatin being particularly potent and detected over the range of 18.7 ng–30 μg of venom; gelatinolytic activity was also detected in four of the RP-HPLC peaks. The venom (10 μg) selectively degraded the α-chain of fibrinogen. All proteolytic activity was inhibited by EDTA (metalloproteinase inhibitor) but not by AEBSF (serine proteinase inhibitor). SDS-PAGE followed by in-gel digestion of the main electrophoretic bands coupled with LC-MS/MS analysis revealed the presence of five toxin families: C-type lectin-like proteins (CTL), cysteine-rich secretory proteins (CRiSP), phospholipase B (PLB), snake venom matrix metalloproteinases (svMMP), and snake venom metalloproteinases (SVMP). These findings extend our knowledge of the toxinology of E. bizona and suggest that the local manifestations (pain, edema, erythema, and ecchymosis) seen in human envenomation by this species are probably mediated by venom metalloproteinases.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.