Ivis V O Martins, Thales M H Dourado, Gustavo F Pimenta, Marcela M Blascke de Mello, Aline G Fedoce, Wanessa M C Awata, Michele M Castro, Rita C Tostes, Carlos R Tirapelli
{"title":"Ethanol-induced dysfunction of the mesenteric perivascular adipose tissue is driven by mineralocorticoid receptors.","authors":"Ivis V O Martins, Thales M H Dourado, Gustavo F Pimenta, Marcela M Blascke de Mello, Aline G Fedoce, Wanessa M C Awata, Michele M Castro, Rita C Tostes, Carlos R Tirapelli","doi":"10.1007/s00424-025-03094-4","DOIUrl":null,"url":null,"abstract":"<p><p>The renin-angiotensin-aldosterone system (RAAS) is critical in ethanol-induced vascular dysfunction. Mineralocorticoid receptors (MR) trigger ethanol-induced vascular hypercontractility through pro-oxidative and pro-inflammatory effects. However, the contribution of MR to ethanol-induced perivascular adipose tissue (PVAT) dysfunction is unknown. Appreciating the importance of MR to PVAT dysfunction in distinctive pathological conditions, we investigated whether MR would play a role in ethanol-induced PVAT dysfunction. With this purpose, male Wistar Hannover rats were treated with ethanol 20% (in volume ratio) and/or potassium canrenoate [a MR antagonist (MRA); 30 mg/kg/day, gavage] for 5 weeks. Ethanol increased the circulating levels of aldosterone and impaired acetylcholine-induced relaxation of mesenteric arteries with, but not without PVAT. Antagonism of MR prevented ethanol-induced impairment in acetylcholine relaxation as well as the reduction of leptin levels and reactive oxygen species (ROS) overproduction in the mesenteric PVAT (mPVAT) from ethanol-treated rats. Ethanol promoted neutrophil accumulation and augmented the concentration of tumor necrosis factor (TNF)-α in the mPVAT and these responses were prevented by the MRA. Functional assays showed that tiron [a scavenger of superoxide (O<sub>2</sub><sup>•-</sup>)] and etanercept (an antibody anti-TNF-α) failed to reverse the impairment of acetylcholine-induced relaxation promoted by ethanol. In mesenteric arteries, antagonism of MR prevented ROS generation, lipoperoxidation, and increased TNF-α levels induced by ethanol. In conclusion, our findings suggest that MR is involved in ethanol-induced dysfunction of mPVAT. This study enhances our understanding of how ethanol exerts harmful effects on the cardiovascular system, highlighting PVAT as a target for these detrimental effects.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03094-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The renin-angiotensin-aldosterone system (RAAS) is critical in ethanol-induced vascular dysfunction. Mineralocorticoid receptors (MR) trigger ethanol-induced vascular hypercontractility through pro-oxidative and pro-inflammatory effects. However, the contribution of MR to ethanol-induced perivascular adipose tissue (PVAT) dysfunction is unknown. Appreciating the importance of MR to PVAT dysfunction in distinctive pathological conditions, we investigated whether MR would play a role in ethanol-induced PVAT dysfunction. With this purpose, male Wistar Hannover rats were treated with ethanol 20% (in volume ratio) and/or potassium canrenoate [a MR antagonist (MRA); 30 mg/kg/day, gavage] for 5 weeks. Ethanol increased the circulating levels of aldosterone and impaired acetylcholine-induced relaxation of mesenteric arteries with, but not without PVAT. Antagonism of MR prevented ethanol-induced impairment in acetylcholine relaxation as well as the reduction of leptin levels and reactive oxygen species (ROS) overproduction in the mesenteric PVAT (mPVAT) from ethanol-treated rats. Ethanol promoted neutrophil accumulation and augmented the concentration of tumor necrosis factor (TNF)-α in the mPVAT and these responses were prevented by the MRA. Functional assays showed that tiron [a scavenger of superoxide (O2•-)] and etanercept (an antibody anti-TNF-α) failed to reverse the impairment of acetylcholine-induced relaxation promoted by ethanol. In mesenteric arteries, antagonism of MR prevented ROS generation, lipoperoxidation, and increased TNF-α levels induced by ethanol. In conclusion, our findings suggest that MR is involved in ethanol-induced dysfunction of mPVAT. This study enhances our understanding of how ethanol exerts harmful effects on the cardiovascular system, highlighting PVAT as a target for these detrimental effects.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.