Abhinav Joshi, Li Dai, Marisa Maisiak, Sunmin Lee, Elizabeth Lopez, Takeshi Ito, Len Neckers
{"title":"Mitochondrial HSP90 paralog TRAP1 deletion drives glutamine addiction in tumor cells via destablization of the Cys/Glu antiporter SLC7A11/xCT.","authors":"Abhinav Joshi, Li Dai, Marisa Maisiak, Sunmin Lee, Elizabeth Lopez, Takeshi Ito, Len Neckers","doi":"10.1158/1541-7786.MCR-24-0194","DOIUrl":null,"url":null,"abstract":"<p><p>TRAP1, the mitochondrial isoform of HSP90, has emerged as a key regulator of cancer cell metabolism, yet the mechanisms by which it rewires nutrient utilization remain poorly understood. We previously reported that TRAP1 loss increases glutamine dependency of mitochondrial respiration following glucose withdrawal. Here, we investigate how TRAP1 deletion impacts glucose metabolism and the mechanisms enabling glutamine retention to support mitochondrial respiration via reductive carboxylation and the oxidative TCA cycle. TRAP1 knockout (KO) in bladder and prostate cancer cells recapitulates the carbon source-specific metabolic rewiring previously observed. Stable isotope tracing reveals that although glucose oxidation remains functional, TRAP1 KO reduces overall glucose uptake and its contribution to glycolysis and the pentose phosphate pathway. This effect is consistent across multiple cell lines. Concurrently, TRAP1-deficient cells exhibit increased glutamine retention and reliance, potentially due to downregulation of the cystine/glutamate antiporter SLC7A11/xCT. Supporting this, xCT overexpression reduces glutamine-dependent respiration in TRAP1 KO cells. qPCR and proteasome inhibition assays suggest xCT is regulated post-translationally via protein stability. Notably, xCT suppression does not trigger ferroptosis, indicating a selective adaptation rather than induction of cell death. Together, our findings suggest that TRAP1 loss decreases glucose uptake while preserving its metabolic fate, promoting glutamine conservation through xCT downregulation to maintain mitochondrial respiration without inducing ferroptosis. Implications: These results reveal a TRAP1-dependent mechanism of metabolic rewiring in cancer cells and identify xCT-mediated glutamine conservation as a key adaptive response, underscoring TRAP1 as a potential metabolic vulnerability and therapeutic target in tumors with altered nutrient utilization.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0194","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TRAP1, the mitochondrial isoform of HSP90, has emerged as a key regulator of cancer cell metabolism, yet the mechanisms by which it rewires nutrient utilization remain poorly understood. We previously reported that TRAP1 loss increases glutamine dependency of mitochondrial respiration following glucose withdrawal. Here, we investigate how TRAP1 deletion impacts glucose metabolism and the mechanisms enabling glutamine retention to support mitochondrial respiration via reductive carboxylation and the oxidative TCA cycle. TRAP1 knockout (KO) in bladder and prostate cancer cells recapitulates the carbon source-specific metabolic rewiring previously observed. Stable isotope tracing reveals that although glucose oxidation remains functional, TRAP1 KO reduces overall glucose uptake and its contribution to glycolysis and the pentose phosphate pathway. This effect is consistent across multiple cell lines. Concurrently, TRAP1-deficient cells exhibit increased glutamine retention and reliance, potentially due to downregulation of the cystine/glutamate antiporter SLC7A11/xCT. Supporting this, xCT overexpression reduces glutamine-dependent respiration in TRAP1 KO cells. qPCR and proteasome inhibition assays suggest xCT is regulated post-translationally via protein stability. Notably, xCT suppression does not trigger ferroptosis, indicating a selective adaptation rather than induction of cell death. Together, our findings suggest that TRAP1 loss decreases glucose uptake while preserving its metabolic fate, promoting glutamine conservation through xCT downregulation to maintain mitochondrial respiration without inducing ferroptosis. Implications: These results reveal a TRAP1-dependent mechanism of metabolic rewiring in cancer cells and identify xCT-mediated glutamine conservation as a key adaptive response, underscoring TRAP1 as a potential metabolic vulnerability and therapeutic target in tumors with altered nutrient utilization.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.