Tan Liu, Guiyang Wang, Jiahui Yu, Mengyuan Li, Tianbo Peng, Jie Wang, Houhua Li, Xiao-Dong Su, Changtao Jiang, Min Ye, Donghui Yang, Ming Ma
{"title":"Structural insights into two thiamine diphosphate-dependent enzymes and their synthetic applications in carbon-carbon linkage reactions.","authors":"Tan Liu, Guiyang Wang, Jiahui Yu, Mengyuan Li, Tianbo Peng, Jie Wang, Houhua Li, Xiao-Dong Su, Changtao Jiang, Min Ye, Donghui Yang, Ming Ma","doi":"10.1038/s41557-025-01822-y","DOIUrl":null,"url":null,"abstract":"<p><p>The α-hydroxy-β-keto acid synthases are thiamine diphosphate-dependent enzymes catalysing carbon-carbon linkage reactions in the biosynthesis of primary metabolites and various secondary metabolites. However, the substrate selectivity and catalytic stereoselectivity of α-hydroxy-β-keto acid synthases are poorly understood, greatly hindering their synthetic application in generating diverse carbon frameworks. We here report the discovery of two new α-hydroxy-β-keto acid synthases CsmA and BbmA, which show different substrate selectivities in catalysing carbon-carbon coupling reactions between two β-keto acids. Four crystal structures of CsmA or BbmA complexed with thiamine diphosphate and their substrates were determined, clearly revealing their structural bases of substrate selectivity and catalytic stereoselectivity. Substrate scope expansion enables us to generate 120 α-hydroxy-β-keto acids together with 240 NaBH<sub>4</sub>-reduction products. Furthermore, we applied CsmA and BbmA into enzymatic total synthesis, generating 36 γ-butyrolactone-containing furanolides. These results provide new structural insights into the catalyses of α-hydroxy-β-keto acid synthases and highlight their great potential in carboligation catalysis and synthetic applications.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":" ","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01822-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The α-hydroxy-β-keto acid synthases are thiamine diphosphate-dependent enzymes catalysing carbon-carbon linkage reactions in the biosynthesis of primary metabolites and various secondary metabolites. However, the substrate selectivity and catalytic stereoselectivity of α-hydroxy-β-keto acid synthases are poorly understood, greatly hindering their synthetic application in generating diverse carbon frameworks. We here report the discovery of two new α-hydroxy-β-keto acid synthases CsmA and BbmA, which show different substrate selectivities in catalysing carbon-carbon coupling reactions between two β-keto acids. Four crystal structures of CsmA or BbmA complexed with thiamine diphosphate and their substrates were determined, clearly revealing their structural bases of substrate selectivity and catalytic stereoselectivity. Substrate scope expansion enables us to generate 120 α-hydroxy-β-keto acids together with 240 NaBH4-reduction products. Furthermore, we applied CsmA and BbmA into enzymatic total synthesis, generating 36 γ-butyrolactone-containing furanolides. These results provide new structural insights into the catalyses of α-hydroxy-β-keto acid synthases and highlight their great potential in carboligation catalysis and synthetic applications.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.