Tetrandrine mediates autophagy via sirtuin 3/adenosine 5-monophosphate-activated protein kinase/mammalian target of rapamycin signal pathway to attenuate early brain injury after subarachnoid hemorrhage.
Wenliang Wang, Yang Li, Yuan Li, Yan-Meng Zhao, Jia-Bei Ye, Tao Qian
{"title":"Tetrandrine mediates autophagy via sirtuin 3/adenosine 5-monophosphate-activated protein kinase/mammalian target of rapamycin signal pathway to attenuate early brain injury after subarachnoid hemorrhage.","authors":"Wenliang Wang, Yang Li, Yuan Li, Yan-Meng Zhao, Jia-Bei Ye, Tao Qian","doi":"10.1097/WNR.0000000000002171","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Early brain injury (EBI) is the main cause of poor outcomes in patients with subarachnoid hemorrhage (SAH). Tetrandrine (Tet) is the root of Stephania tetrandra S Moore extract that has been shown to promote neuronal survival and regulate a variety of signaling pathways; however, the mechanism through which it exerts neuroprotective effects in patients with SAH is unknown. This investigation was to examine Tet's effect on EBI in SAH rats.</p><p><strong>Basic methods: </strong>We divided the rats into four groups. The effects of Tet treatment on the pathological changes of neurons in rat brains were evaluated, as well as autophagy-related and signaling pathway proteins.</p><p><strong>Main results: </strong>We found that Tet had a neuroprotective effect on EBI after SAH, as evidenced by the fact that Tet ameliorated SAH-mediated neurologic impairment and neuronal morphological damage and reduced brain water content, neuronal apoptosis rate, and neuronal cell loss. Tet decreased the LC3II/LC3I ratio, elevated P62 protein expression, and inhibited autophagosome production after SAH. Tet may have increased sirtuin 3 (SIRT3) expression, decreased adenosine 5-monophosphate-activated protein kinase (AMPK) phosphorylation, and increased phosphor-mammalian target of rapamycin (mTOR) levels, all of which may have occurred particularly via SIRT3/AMPK/mTOR signaling pathway activation; However, this trend can be reversed by 3-(1H-1,2,3-triazol-4-yl) pyridine (SIRT3 inhibitors).</p><p><strong>Conclusions: </strong>Tet exerts neuroprotective effects by inhibiting autophagy, this may be associated with SIRT3's inhibitory effect on the AMPK/mTOR signaling pathway. This inhibition could function as a potential mechanism for the neuroprotective effects observed in patients suffering from SAH.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"514-523"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Early brain injury (EBI) is the main cause of poor outcomes in patients with subarachnoid hemorrhage (SAH). Tetrandrine (Tet) is the root of Stephania tetrandra S Moore extract that has been shown to promote neuronal survival and regulate a variety of signaling pathways; however, the mechanism through which it exerts neuroprotective effects in patients with SAH is unknown. This investigation was to examine Tet's effect on EBI in SAH rats.
Basic methods: We divided the rats into four groups. The effects of Tet treatment on the pathological changes of neurons in rat brains were evaluated, as well as autophagy-related and signaling pathway proteins.
Main results: We found that Tet had a neuroprotective effect on EBI after SAH, as evidenced by the fact that Tet ameliorated SAH-mediated neurologic impairment and neuronal morphological damage and reduced brain water content, neuronal apoptosis rate, and neuronal cell loss. Tet decreased the LC3II/LC3I ratio, elevated P62 protein expression, and inhibited autophagosome production after SAH. Tet may have increased sirtuin 3 (SIRT3) expression, decreased adenosine 5-monophosphate-activated protein kinase (AMPK) phosphorylation, and increased phosphor-mammalian target of rapamycin (mTOR) levels, all of which may have occurred particularly via SIRT3/AMPK/mTOR signaling pathway activation; However, this trend can be reversed by 3-(1H-1,2,3-triazol-4-yl) pyridine (SIRT3 inhibitors).
Conclusions: Tet exerts neuroprotective effects by inhibiting autophagy, this may be associated with SIRT3's inhibitory effect on the AMPK/mTOR signaling pathway. This inhibition could function as a potential mechanism for the neuroprotective effects observed in patients suffering from SAH.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.