Plasmonic catalysis with bi-resonant noble metal-CuFeS2chalcopyrite hybrid structures.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Koustav Kundu, Tianhong Ouyang, Björn M Reinhard
{"title":"Plasmonic catalysis with bi-resonant noble metal-CuFeS<sub>2</sub>chalcopyrite hybrid structures.","authors":"Koustav Kundu, Tianhong Ouyang, Björn M Reinhard","doi":"10.1088/1361-6528/add93f","DOIUrl":null,"url":null,"abstract":"<p><p>Both noble metal nanoparticles (NPs) and chalcopyrite (CuFeS<sub>2</sub>) nanocrystals (NCs) provide resonant absorption in the visible, albeit through different mechanisms. Coherent oscillations of free conduction band electrons give rise to localized plasmons in noble metal NPs, whereas collective oscillations of bound electrons are responsible for quasistatic resonances in CuFeS<sub>2</sub>NCs. This manuscript reviews the photophysical and photocatalytic properties of both noble metal and chalcopyrite nanostructures as well as direct and indirect charge and energy transfer processes in hybrid structures containing noble metal NPs and either semiconductor NCs or molecular photosensitizers or photocatalysts. CuFeS<sub>2</sub>NCs share structural similarities with conventional semiconductor NCs, but the availability of collective charge oscillations in the visible facilitates a resonant coupling to localized plasmons in NPs. Hybrid nanostructures containing both metal and chalcopyrite building blocks are examined as a platform for wavelength-dependent charge and energy transfer and bifunctional reactivity for enhanced plasmonic photocatalysis.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/add93f","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Both noble metal nanoparticles (NPs) and chalcopyrite (CuFeS2) nanocrystals (NCs) provide resonant absorption in the visible, albeit through different mechanisms. Coherent oscillations of free conduction band electrons give rise to localized plasmons in noble metal NPs, whereas collective oscillations of bound electrons are responsible for quasistatic resonances in CuFeS2NCs. This manuscript reviews the photophysical and photocatalytic properties of both noble metal and chalcopyrite nanostructures as well as direct and indirect charge and energy transfer processes in hybrid structures containing noble metal NPs and either semiconductor NCs or molecular photosensitizers or photocatalysts. CuFeS2NCs share structural similarities with conventional semiconductor NCs, but the availability of collective charge oscillations in the visible facilitates a resonant coupling to localized plasmons in NPs. Hybrid nanostructures containing both metal and chalcopyrite building blocks are examined as a platform for wavelength-dependent charge and energy transfer and bifunctional reactivity for enhanced plasmonic photocatalysis.

双共振贵金属- cufes2黄铜矿杂化结构的等离子体催化。
贵金属纳米粒子(NPs)和黄铜矿(CuFeS2)纳米晶体(NCs)在可见光下都提供共振吸收,尽管通过不同的机制。在贵金属纳米粒子中,自由导带电子的相干振荡产生局域等离子体激元,而在CuFeS2纳米粒子中,束缚电子的集体振荡产生准静态共振。本文综述了贵金属和黄铜矿纳米结构的光物理和光催化性质,以及含有贵金属纳米粒子和半导体纳米粒子或分子光敏剂或光催化剂的杂化结构中的直接和间接电荷和能量转移过程。CuFeS2纳米粒子与传统半导体纳米粒子在结构上有相似之处,但在可见光中集体电荷振荡的可用性促进了纳米粒子与局域等离子体激元的共振耦合。混合纳米结构包含金属和黄铜矿构建块作为波长依赖的电荷和能量转移以及增强等离子体光催化的双功能反应性的平台进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信