The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Nora S Wolcott, William T Redman, Marie Karpinska, Emily G Jacobs, Michael J Goard
{"title":"The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding.","authors":"Nora S Wolcott, William T Redman, Marie Karpinska, Emily G Jacobs, Michael J Goard","doi":"10.1016/j.neuron.2025.04.014","DOIUrl":null,"url":null,"abstract":"<p><p>Histological evidence suggests that the estrous cycle exerts a powerful influence on CA1 neurons in the mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice across multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with spine density peaking during proestrus when estradiol levels are highest. These morphological changes coincided with greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed greater place field stability during proestrus, evident at both the single-cell and population levels. These findings demonstrate that the estrous cycle drives large-scale structural and functional plasticity in hippocampal neurons essential for learning and memory.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.04.014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Histological evidence suggests that the estrous cycle exerts a powerful influence on CA1 neurons in the mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice across multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with spine density peaking during proestrus when estradiol levels are highest. These morphological changes coincided with greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed greater place field stability during proestrus, evident at both the single-cell and population levels. These findings demonstrate that the estrous cycle drives large-scale structural and functional plasticity in hippocampal neurons essential for learning and memory.

发情周期调节海马脊柱动力学、树突加工和空间编码。
组织学证据表明,发情周期对哺乳动物海马中的CA1神经元有强大的影响。这一具有里程碑意义的观察已经过去了几十年,但动情周期如何影响体内树突棘动力学和海马空间编码仍然是一个谜。在这里,我们使用定制的海马显微潜望镜和双光子钙成像在多个周期内跟踪雌性小鼠的CA1锥体神经元。发情周期阶段对脊柱动力学有强有力的影响,当雌二醇水平最高时,脊柱密度在发情前达到峰值。这些形态变化与更大的体树突耦合和更多的反向传播动作电位渗透到顶端树突相一致。最后,对导航过程中CA1响应特性的跟踪显示,在发情期,在单细胞和群体水平上,CA1响应特性具有更大的位置场稳定性。这些发现表明,发情周期驱动海马神经元的大规模结构和功能可塑性,这对学习和记忆至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信