Presynaptic α2δs specify synaptic gain, not synaptogenesis, in the mammalian brain.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
William Milanick, Jianing Li, Connon I Thomas, Mohammed Al-Yaari, Debbie Guerrero-Given, Naomi Kamasawa, Samuel M Young
{"title":"Presynaptic α<sub>2</sub>δs specify synaptic gain, not synaptogenesis, in the mammalian brain.","authors":"William Milanick, Jianing Li, Connon I Thomas, Mohammed Al-Yaari, Debbie Guerrero-Given, Naomi Kamasawa, Samuel M Young","doi":"10.1016/j.neuron.2025.04.013","DOIUrl":null,"url":null,"abstract":"<p><p>The α<sub>2</sub>δs are a family of extracellular synaptic molecules that are auxiliary subunits of voltage-gated Ca<sup>2+</sup> channel (Ca<sub>V</sub>) complexes. They are linked to brain disorders and are drug targets. The α<sub>2</sub>δs are implicated in controlling synapse development and function through distinct Ca<sub>V</sub>-dependent and Ca<sub>V</sub>-independent pathways. However, the mechanisms of action remain enigmatic since synapses contain mixtures of α<sub>2</sub>δ isoforms in the pre- and postsynaptic compartments. We developed a triple conditional knockout mouse model and demonstrated the combined selective presynaptic ablation of α<sub>2</sub>δs in vivo in a developing mammalian glutamatergic synapse. We identified presynaptic α<sub>2</sub>δs as positive regulators of Munc13-1 levels, an essential neurotransmitter release protein. We found that mammalian synapse development, presynaptic Ca<sub>V</sub>2.1 organization, and the transsynaptic alignment of presynaptic release sites and postsynaptic glutamate receptors are independent of presynaptic α<sub>2</sub>δs. Therefore, our results define presynaptic α<sub>2</sub>δ regulatory roles and suggest a new α<sub>2</sub>δ role in controlling synaptic strength and plasticity.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.04.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The α2δs are a family of extracellular synaptic molecules that are auxiliary subunits of voltage-gated Ca2+ channel (CaV) complexes. They are linked to brain disorders and are drug targets. The α2δs are implicated in controlling synapse development and function through distinct CaV-dependent and CaV-independent pathways. However, the mechanisms of action remain enigmatic since synapses contain mixtures of α2δ isoforms in the pre- and postsynaptic compartments. We developed a triple conditional knockout mouse model and demonstrated the combined selective presynaptic ablation of α2δs in vivo in a developing mammalian glutamatergic synapse. We identified presynaptic α2δs as positive regulators of Munc13-1 levels, an essential neurotransmitter release protein. We found that mammalian synapse development, presynaptic CaV2.1 organization, and the transsynaptic alignment of presynaptic release sites and postsynaptic glutamate receptors are independent of presynaptic α2δs. Therefore, our results define presynaptic α2δ regulatory roles and suggest a new α2δ role in controlling synaptic strength and plasticity.

在哺乳动物大脑中,突触前α2δs指定突触增益,而不是突触发生。
α2δs是细胞外突触分子家族,是电压门控Ca2+通道(CaV)复合物的辅助亚基。它们与脑部疾病有关,是药物的靶点。α2δs通过不同的cav依赖性和cav非依赖性途径参与控制突触的发育和功能。然而,作用机制仍然是谜,因为突触在突触前和突触后区室中含有α2δ同种异构体的混合物。我们建立了一个三重条件敲除小鼠模型,并在发育中的哺乳动物谷氨酸突触中证明了α2δs在体内的联合选择性突触前消融。我们发现突触前α2δs是Munc13-1水平的正调节因子,Munc13-1是一种必需的神经递质释放蛋白。我们发现,哺乳动物突触发育、突触前CaV2.1组织以及突触前释放位点和突触后谷氨酸受体的跨突触排列与突触前α2δs无关。因此,我们的研究结果明确了突触前α2δ的调节作用,并提出了α2δ在控制突触强度和可塑性方面的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信