{"title":"Metabolomics: a new frontier in neurodegenerative disease biomarker discovery.","authors":"Krishan Kumar Verma, Praveen Kumar Gaur, Sonia Lal Gupta, Kanak Lata, Rahul Kaushik, Vikas Sharma","doi":"10.1007/s11306-025-02267-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neurodegenerative disorders are a group of debilitating diseases affecting the central nervous system, and are characterized by the progressive loss of neurons, leading to declines in cognitive function, movement, and overall quality of life. While the exact causes remain elusive, it's believed that a combination of genetic, environmental, and lifestyle factors contribute to their development. Metabolites, the end products of cellular processes, reflect the physiological state of an organism. By analysing these molecules, researchers can gain a deeper understanding of the underlying metabolic changes associated with neurodegenerative disorders.</p><p><strong>Aim of review: </strong>This review aims to explore the possibilities between metabolites and their association with neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS) and Huntington's disease (HD).</p><p><strong>Key scientific concepts of review: </strong>Metabolomic studies could potentially illuminate altered biochemical pathways, facilitating earlier detection and treatment of these conditions. Metabolomic investigations have revealed the role of oxidative stress, alterations in glucose and fat metabolism, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and alterations in myelin composition in neurodegenerative disorders. The common metabolic biomarkers identified includes glutamate, taurine, uric acid, branched chain amino acids, acylcarnitine, creatinine, choline, with some more amino acids and lipids. Metabolomics offers valuable insights into disease mechanisms and potential therapeutic targets by identifying biochemical and metabolic alterations, but still there are several aspects to be explored for accurate mapping of metabolites with specific pathway involved in the disease.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 3","pages":"67"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02267-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neurodegenerative disorders are a group of debilitating diseases affecting the central nervous system, and are characterized by the progressive loss of neurons, leading to declines in cognitive function, movement, and overall quality of life. While the exact causes remain elusive, it's believed that a combination of genetic, environmental, and lifestyle factors contribute to their development. Metabolites, the end products of cellular processes, reflect the physiological state of an organism. By analysing these molecules, researchers can gain a deeper understanding of the underlying metabolic changes associated with neurodegenerative disorders.
Aim of review: This review aims to explore the possibilities between metabolites and their association with neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS) and Huntington's disease (HD).
Key scientific concepts of review: Metabolomic studies could potentially illuminate altered biochemical pathways, facilitating earlier detection and treatment of these conditions. Metabolomic investigations have revealed the role of oxidative stress, alterations in glucose and fat metabolism, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and alterations in myelin composition in neurodegenerative disorders. The common metabolic biomarkers identified includes glutamate, taurine, uric acid, branched chain amino acids, acylcarnitine, creatinine, choline, with some more amino acids and lipids. Metabolomics offers valuable insights into disease mechanisms and potential therapeutic targets by identifying biochemical and metabolic alterations, but still there are several aspects to be explored for accurate mapping of metabolites with specific pathway involved in the disease.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.