Non-Catalytic Domains of Glycoside Hydrolase Family 5 from Paenibacillus curdlanolyticus are Important for Promoting Multifunctional Enzyme Activities and Degradation of Agricultural Residues.
IF 2.5 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Non-Catalytic Domains of Glycoside Hydrolase Family 5 from <i>Paenibacillus curdlanolyticus</i> are Important for Promoting Multifunctional Enzyme Activities and Degradation of Agricultural Residues.","authors":"Niendy Virnanda Fatmawati, Apinya Singkhala, Prattana Ketbot, Sirilak Baramee, Rattiya Waeonukul, Chakrit Tachaapaikoon, Ayaka Uke, Akihiko Kosugi, Khanok Ratanakhanokchai, Patthra Pason","doi":"10.4014/jmb.2501.01046","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pc</i>GH5 from <i>Paenibacillus curdlanolyticus</i> strain B-6 is a modular protein consisting of a catalytic domain of glycoside hydrolase family 5 (GH5), and three non-catalytic domains (a family 11 carbohydrate-binding module (CBM11), a fibronectin type 3 (Fn3), and a family 3 carbohydrate-binding module (CBM3). In this study, the recombinants full-length <i>Pc</i>GH5 and the catalytic domain (<i>Pc</i>GH5_CD) were expressed in <i>Escherichia coli</i> and purified. Most GH5 members exhibit endo-cellulase activity. However, the catalytic domain enzyme of strain B-6 exhibited unique properties, showing multifunctional enzyme activities of endo-cellulase, endo-xylanase, endo-mannanase, and endo-1,3-1,4-β-glucanase. The sequence alignment of <i>Pc</i>GH5_CD compared to other characterized GH5 enzymes suggests that the two catalytic residues and the six substrate-binding subsites of endo-cellulases were conserved with other different GH5 enzyme properties. Whereas a few conserved amino acid residues and/or short peptides located outside the active site of the GH5 endo-cellulases may be involved in broad substrate specificity of <i>Pc</i>GH5_CD enzyme on xylan, mannan and 1,3-1,4-β-glucan. Moreover, the non-catalytic domains (CBM11-Fn3-CBM3) linked to the GH5 catalytic domain are important for promoting the multifunctional enzyme activities of <i>Pc</i>GH5 on the β-1,4 glycosidic linkages of crystalline cellulose, highly branched polysaccharides, and β-1,4-1,6 and β-1,3-1,4 glycosidic linkages of polysaccharides, especially for the polysaccharides complex contained in agricultural residues. The full-length <i>Pc</i>GH5 is effective in producing oligosaccharides from agricultural residues without pretreatment. Therefore, it is interesting to use it as a source of prebiotics producer for use in various food products.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2501046"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2501.01046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PcGH5 from Paenibacillus curdlanolyticus strain B-6 is a modular protein consisting of a catalytic domain of glycoside hydrolase family 5 (GH5), and three non-catalytic domains (a family 11 carbohydrate-binding module (CBM11), a fibronectin type 3 (Fn3), and a family 3 carbohydrate-binding module (CBM3). In this study, the recombinants full-length PcGH5 and the catalytic domain (PcGH5_CD) were expressed in Escherichia coli and purified. Most GH5 members exhibit endo-cellulase activity. However, the catalytic domain enzyme of strain B-6 exhibited unique properties, showing multifunctional enzyme activities of endo-cellulase, endo-xylanase, endo-mannanase, and endo-1,3-1,4-β-glucanase. The sequence alignment of PcGH5_CD compared to other characterized GH5 enzymes suggests that the two catalytic residues and the six substrate-binding subsites of endo-cellulases were conserved with other different GH5 enzyme properties. Whereas a few conserved amino acid residues and/or short peptides located outside the active site of the GH5 endo-cellulases may be involved in broad substrate specificity of PcGH5_CD enzyme on xylan, mannan and 1,3-1,4-β-glucan. Moreover, the non-catalytic domains (CBM11-Fn3-CBM3) linked to the GH5 catalytic domain are important for promoting the multifunctional enzyme activities of PcGH5 on the β-1,4 glycosidic linkages of crystalline cellulose, highly branched polysaccharides, and β-1,4-1,6 and β-1,3-1,4 glycosidic linkages of polysaccharides, especially for the polysaccharides complex contained in agricultural residues. The full-length PcGH5 is effective in producing oligosaccharides from agricultural residues without pretreatment. Therefore, it is interesting to use it as a source of prebiotics producer for use in various food products.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.