Kar Min Loh, Yi Ying Cheok, Ting Fang Tang, Chung Yeng Looi, Won Fen Wong, Suhailah Abdullah
{"title":"Detrimental roles of innate immune cells in neuromyelitis optica spectrum disorder: Pathogenesis and therapeutic targeting.","authors":"Kar Min Loh, Yi Ying Cheok, Ting Fang Tang, Chung Yeng Looi, Won Fen Wong, Suhailah Abdullah","doi":"10.1093/jleuko/qiaf068","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromyelitis optica spectrum disorder (NMOSD) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects the optic nerves, spinal cord, and brainstem, leading to severe relapses and potentially significant neurological disability. Most NMOSD patients present with anti-aquaporin-4 autoantibodies (AQP4-IgG), which trigger acute neuroinflammation and astrocyte damage through classical complement pathway activation and immune cell recruitment, yet AQP4-IgG alone does not fully account for NMOSD pathogenesis, suggesting additional contributing mechanisms. Emerging evidence highlights the critical role of innate immune cells-macrophages, neutrophils, eosinophils, and natural killer cells-in NMOSD lesion development, in which they amplify inflammation through cytokine release, antibody-dependent cellular cytotoxicity, and immune cell recruitment, ultimately exacerbating CNS damage. Importantly, recent advancements in NMOSD therapies have incorporated targeting innate immune responses, including interleukin-6 and complement inhibitors, and neutrophil and eosinophil modulators, enhancing treatment efficacy. This review explores the multifaceted roles of innate immune cells, their interactions with AQP4-IgG, and their contribution to disease progression. In summary, targeting innate immune pathways offers an alternative strategy to mitigate inflammation and damage in CNS.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiaf068","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects the optic nerves, spinal cord, and brainstem, leading to severe relapses and potentially significant neurological disability. Most NMOSD patients present with anti-aquaporin-4 autoantibodies (AQP4-IgG), which trigger acute neuroinflammation and astrocyte damage through classical complement pathway activation and immune cell recruitment, yet AQP4-IgG alone does not fully account for NMOSD pathogenesis, suggesting additional contributing mechanisms. Emerging evidence highlights the critical role of innate immune cells-macrophages, neutrophils, eosinophils, and natural killer cells-in NMOSD lesion development, in which they amplify inflammation through cytokine release, antibody-dependent cellular cytotoxicity, and immune cell recruitment, ultimately exacerbating CNS damage. Importantly, recent advancements in NMOSD therapies have incorporated targeting innate immune responses, including interleukin-6 and complement inhibitors, and neutrophil and eosinophil modulators, enhancing treatment efficacy. This review explores the multifaceted roles of innate immune cells, their interactions with AQP4-IgG, and their contribution to disease progression. In summary, targeting innate immune pathways offers an alternative strategy to mitigate inflammation and damage in CNS.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.